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Abstract

Ecologists have documented many characteristics of natural systems that

foster ecosystem persistence, and it might be deduced that such strategies are

essential for counteracting the negative effect of complexity on local stability

that was suggested by R.M. May in his influential work of the 1970s. However,

we show that the loss of local stability does not necessarily imply total ecosys-

tem extinction. A more general criterion of ecosystem viability is the long-term

persistence of any number of surviving species—not necessarily all of them.

With this approach, we show that persistence increases with complexity, con-

trary to previous theoretical findings. In particular, positive interactions

(mutualistic or prey-to-predator) play a crucial role in creating ecological

niches, which sustain biodiversity with increasing complexity.
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INTRODUCTION

The relationship between complexity and stability has
long been debated in ecology (Allesina & Tang, 2012;
Cohen & Newman, 1985; Elton, 1958; Hatton et al., 2024;
MacArthur, 1955; May, 1972, 1973; McCann, 2000;
Mougi & Kondoh, 2012, 2014; Odum, 1953; Pimm, 1984;
Tilman & Downing, 1994; Tregonning & Roberts, 1979).
Laboratory and field experiments (Hooper & Vitousek,
1997; McCann, 2000; McGrady-Steed et al., 1997; Naeem
et al., 1994, 1995, 1996; Naeem & Li, 1997; Tilman
et al., 1996) tend to indicate that more diverse ecological
communities are more productive and less variable.
These findings are in line with the conventional wisdom
of ecologists that greater biodiversity favors ecosystem
health (Elton, 1958; MacArthur, 1955; Odum, 1953).
However, these findings also seem to contradict the

pioneering theoretical studies (Gardner & Ashby, 1970;
May, 1972, 1973) that demonstrated that randomly built
complex mathematical models tend to be unstable and,
thus, that the corresponding ecosystems are unlikely to
exist in nature. The rationale originally used by May
(1972) to prove the nonviability of large complex systems
was as follows: take S dynamic variables with random
interactions, assume that they are in equilibrium, and
examine the local (mathematical) stability of this equi-
librium. Pairwise interactions can be of all types: com-
petition (− −), antagonism (− +), mutualism (+ +),
commensalism (+ 0), and amensalism (− 0). An equilib-
rium is locally stable if, after a small disturbance, the sys-
tem returns to it. The authors who used this approach
(Gardner & Ashby, 1970; May, 1972, 1973) observed that
the probability of being in a stable local equilibrium
decreases when the number of species S increases and/or
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the connectance c (a measure of the interaction density)
increases.

Most importantly, these authors did not investigate the
nonequilibrium properties of unstable systems because
they did not follow the time course of population trajecto-
ries. The limited power of computers at that time only per-
mitted determining whether equilibria were stable or
unstable. Resting on the assumption that existing ecologi-
cal systems in nature are necessarily stable and equating
viability with local stability, the conclusion was that com-
plexity could not be an explanation for ecological viability.

Here, we argue that it is incorrect to dismiss all unsta-
ble systems: some unstable systems can be viable. Taking
the case of a single population as the simplest possible
example, the basic model of population biology is the
Malthus equation.

dN
Ndt

¼ λ,

which predicts either unlimited growth (if λ>0) or a
decline to extinction (if λ<0) but never nonzero stable
equilibrium. With the help of a model, every conserva-
tion ecologist would be happy to find that some endan-
gered species has a growth rate λ>0, suggesting that the
species is not on the way to extinction. However, this also
means, strictly speaking, that the population is on the
way to infinity and, thus, is unstable. In this case, insta-
bility does not equate with extinction, on the contrary! Of
course, the population must ultimately encounter some
limitation to growth, which is not accounted for in the
basic Malthus equation. Simply put, every model has a
realm of applicability and, in a conservation context,
when populations are low, the Malthus equation is
sufficient.

How can this argument for a single population be
extended to a multispecies community? Will an unstable
system result in total extinction, or will some species
grow indefinitely and thus be viable? If the latter is true,
how many species are involved in the collective growth?
What are the factors that determine the probability of
this growth? What happens when growing populations
ultimately encounter unavoidable limitations?

In this paper, we argue that many of the theoretical
systems that were considered nonviable because of their
instability actually correspond to biologically viable sys-
tems: those systems that “escape” from the local (mathe-
matically unstable) equilibrium, with one or more
species growing indefinitely. Of course, exploding species
must ultimately reach bounds set by limiting resources
that were not accounted for by the theoretical models.
The only nonviable systems are those in which all
populations decline to extinction.

METHODS

A first building block in the mathematical description of
a multispecies situation is the well-known Lotka–
Volterra family of models for two species. Depending on
the signs of the parameters that quantify the interspecific
interactions, these models can describe all pairwise inter-
actions mentioned in the Introduction (Gause & Witt,
1935; May, 1973, 1981; Odum, 1953). The dynamic out-
comes of these systems are well known. Antagonism
(e.g., predation) can lead to stable coexistence, cycling
coexistence, or extinction. Situations with negative inter-
actions only (competition, amensalism) lead either to
coexistence or to alternative stable states with extinctions
(Gause & Witt, 1935). Particularly interesting are the situ-
ations with positive interactions only (mutualism, com-
mensalism): these interactions can lead to coexistence, to
extinction, or to population explosion (Gause &
Witt, 1935; Goh, 1979).

In order to describe the dynamics of larger
communities with more than two species, we will use
the classical extension known as the generalized
Lotka–Volterra model (GLV; see below). Note that we
assume that any pair of species is linked by a single
type of interaction (competition, antagonism, mutual-
ism, …). We do not consider dual interactions, as
defined by Mougi (2024).

We start by giving a general outline of the methodo-
logical rationale. First, given a number of species S, we
sample a per capita interaction strength matrix A (of size
S× S) and a vector of equilibrium positive abundances
N* (of size S). Based on this interaction matrix and this
equilibrium vector, a unique GLV model is built in such
way that N* is a positive equilibrium of this model. Then,
the eigenvalues of the Jacobian matrix evaluated at this
point are calculated. Given these eigenvalues, the local
stability of the equilibrium point is determined by apply-
ing the Routh–Hurwitz criterion.

Second, we generate at random a perturbed vector Np

that is very close to the equilibrium vector N*. This
perturbed vector is used as the initial condition for simu-
lating numerically the GLV model parameterized as
above. If the equilibrium point N* is locally stable, the
dynamics converge back, of course, to N;* but, if it is
unstable, two possibilities can occur:

1. The dynamics converge to another equilibrium point,
possibly with some species becoming extinct, or even
all of them (system extinction).

2. One or more species can blow up with no limit. In this
case, we stop the simulation when any species reaches
an abundance of 1000 (chosen as an arbitrarily large
number).
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At the end of the simulation, each species with an
abundance greater than 10−4 is considered alive, while if
its abundance is lower, it is considered to be extinct.

Third, we repeat these two steps for a gradient of
initial community richness S ranging from 10 to 250
(or 350) species in increments of 10 and simulate 1000
random communities for each richness S.

In order to avoid unrealistic abundance growth to
infinity, which can occur in the second step above, we
also devised a modification of the GLV model in such a
way that populations cannot grow uncontrolled. The
assumption is that any species must ultimately encounter
limits to growth. In this modified model, each species is
bounded to an abundance Nmax, with its per capita
growth rate declining asymptotically to zero when
approaching Nmax. This is not mechanistic modeling but
the simplest phenomenological model that avoids unlim-
ited growth. The dynamics of this modified model always
converge to an equilibrium point. Note that the modified
model is built in such a way that the sampled equilibrium
point N* at the first step is still an equilibrium point of
the modified model.

At the end of the simulation, we count the number of
species still alive as well as the number of species that
reached the maximum abundance Nmax. In our numeri-
cal simulations, we set Nmax ¼ 1000. We repeat the simu-
lations as in the third step.

Finally, in order to understand the effects of positive
and negative interactions, we repeat the modified GLV
model simulations: first, with interaction matrices
containing only negative or null interactions, and
second, with only positive or null interspecific in-
teractions and negative intraspecific interactions
(intraspecific competition).

GLV model

The dynamic equations of the GLV model are

dNi

dt
¼Ni × ri +

XS
j¼1

aij ×Nj

 !
:

Given a sampled vector N* and a sampled interaction
matrix A, N* must be a positive equilibrium point of the
GLV model. This is ensured by setting the vector of
intrinsic growth rates r as

r¼ –AN�:

Hofbauer and Sigmund (1998, p. 4, Theorem 5.2.1)
proved mathematically that, in the GLV model, the

existence of a strictly positive trajectory requires the exis-
tence of a strictly positive equilibrium point (possibly
unstable). In other terms, no trajectory can exist in the
absence of an equilibrium. Thus, the existence of an equi-
librium is not a restrictive assumption.

The model dynamics are simulated using the numeri-
cal integrator lsodsa of the library deSolve (Soetaert
et al., 2010) with the R software (R Core Team, 2024).
The R code that we used for performing the simulations
and for drawing the figures is publicly available
(Rohr, 2025). The simulation is stopped when any species
reaches an abundance of 1000 or when all species have
converged to an equilibrium (i.e., dNi=dtj j<10− 5,8i). In
theory, it is also possible that one or more species settle
on a never-ending cyclic (or chaotic) regime. For this rea-
son, we set a simulation time limit of 1000 steps.
However, this situation never occurred in our simula-
tions (see Discussion).

Sampling the interaction matrices and the
equilibrium abundances

The per capita interaction strength matrix A¼ aij
� �

is
generated as follows:

1. We set the diagonal elements, that is, the intraspecific
competition strength, to −1; that is, aii = −1.

2. The matrix A contains c S (S–1) nonzero off-diagonal
elements aij. The parameter c is the connectance, that
is, the proportion of nonzero interspecific interaction
coefficients. The magnitude of these interaction coeffi-
cients is sampled at random in a Gaussian distribution
of mean zero and of variance σ, that is, aij �N 0,σð Þ.

3. The remaining interspecific interactions are set
to zero.

The elements of the equilibrium abundance vector
N* = [Ni*] are sampled following a log-Gaussian distri-
bution with a mean of zero and a SD of 1, that is,
ln N�

i

� �
∽N 0,1ð Þ. Consequently, the equilibrium abun-

dances are, on average, equal to e1/2.

Sampling the perturbations

The initial conditions for simulating the GLV model are
set by a perturbation of the equilibrium abundances N*.
The elements Np,i of the vector of perturbed abundances
Np are obtained by adding a normally distributed random
number of mean zero and SD 0.02 to the equilibrium
abundances Ni*, that is, Np,i ∽N N�

i ,0:02
� �

. Note that, in
order to avoid negative abundances in the very rare case
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in which the sampled perturbed elements are negative
(i.e., Np,i<0), we take their absolute values.

Modified GLV

In order to avoid unlimited growth, we use the following
modification of the GLV model:

dNi

dt
¼Ni × ri +

X
j
aij ×Nj

� �
×

Nmax −Ni

Nmax

� 	
:

Compared with the original GLV model, we apply the
multiplicative term Nmax −Ni

Nmax

� �
. This term avoids unlimited

growth by bounding, from above, the abundance of each
species to the value Nmax . When the abundance is below
this threshold, the sign of the whole expression is given
by the sign of the first bracket, that is, the original GLV
model. Moreover, an equilibrium point N* of the original
GLV model remains an equilibrium point of the modified
model. When a population converges to the abundance
Nmax , its per capita growth rate declines and converges
to zero. Thus, this multiplicative term sets the upper
bound Nmax to every species abundance. In the numeri-
cal simulations, we set Nmax ¼ 1000. With no loss of gen-
erality, we can assume that all species are renormalized
in such a way that they all have the same Nmax .

In order to further understand the properties of the
modified model, we now perform the phase-plane analy-
sis of a system of two mutualistic species (Figure 1). The
original Lotka–Volterra model is given by the following
system of two differential equations:

dN1

dt
¼N1 × r1 + a11 ×N1 + a12 ×N2ð Þ,

dN2

dt
¼N2 × r2 + a21 ×N1 + a22 ×N2ð Þ,

while the corresponding modified Lotka–Volterra
model is

dN1

dt
¼N1 × r1 + a11 ×N1 + a12 ×N2ð Þ× Nmax −N1

Nmax

� 	
,

dN2

dt
¼N2 × r2 + a21 ×N1 + a22 ×N2ð Þ× Nmax −N2

Nmax

� 	
:

In panels A and B of Figure 1, the blue and red dashed
lines represent the nontrivial zero-growth isoclines for
species 1 and 2, respectively. We assume the existence of
a positive equilibrium, visualized by the yellow dot at the
intersection of the isoclines, and we also assume that this
equilibrium is unstable (a saddle point), that is, we

F I GURE 1 Phase-plane comparison between the original and the modified Lotka–Volterra models for two mutualistic species. Panel

(A) shows, in the original Lotka–Volterra model, the typical pattern with an unstable nontrivial equilibrium point (yellow dot) leading either

to population blow-up at the upper right or toward extinction (green dot). Panel (B) shows the changes brought about by the modified

version of the Lotka–Volterra model. The panel clearly shows that the populations are now bounded by the new stable equilibrium point at

the upper right (purple dot). Detailed explanations are given in the Methods section.

4 of 10 ROHR ET AL.
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assume a12 × a21 > a11 × a22. The green dot is the trivial
equilibrium (abundances equal to zero), which, in this
case, is always locally stable. The arrows represent the
vector field of the differential equations. In panel A, we
see that, depending on the perturbation of the positive
equilibrium (yellow dot), the system can either converge
to extinction (green dot) or blow up to infinity. Panel B
shows the effect of the extra term Nmax −Ni

Nmax

� �
on the

behavior of the modified model. First, there are two new
nontrivial zero-growth isoclines (blue horizontal and red
vertical dashed lines) and their intersection defines a new
equilibrium point represented by the purple dot. Second,
examining the modification of the vector field, we can
see that the system is prevented from blowing up, with
the maximum abundance that can be reached being
Nmax . Third, depending on the direction of the perturba-
tion of the unstable equilibrium (yellow dot), the system
either converges to the trivial equilibrium (green dot),
where both species become extinct, or to the new positive
equilibrium (purple dot), where both species are alive.

RESULTS

Our approach attempts to remain as close as possible to
the original May approach with the crucial addition that,
with numerical simulations of the GLV model, we are
able to follow the time course of population abundances,
particularly in the cases of unstable equilibria. The main
results are presented in Figures 2–4.

In Figure 2, we represent the proportion of commu-
nities with a nontrivial stable equilibrium point
(Figure 2A), the proportion of communities with at
least one species exploding to 1000 (Figure 2B), and the
number of species alive at the end of the simulation
(Figure 2C), as functions of the initial community

F I GURE 2 Effect of initial community richness on the

outcome of the generalized Lotka–Volterra dynamics. Panel

(A) represents the proportion of communities for which the

equilibrium point is locally stable, that is, for which a small

perturbation in the equilibrium abundance results in dynamics

converging back to this equilibrium. Panel (B) shows the

proportion of communities in which at least one species displays

unlimited growth. Panel (C) shows the number of species alive at

the end of the simulations. In panels (B and C), the simulations are

stopped either if the system converges to a new equilibrium point

or if at least one species reaches an abundance of 1000. The

parameters for sampling the interaction matrices are c = 0.7

and σ = 0.2.
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richness S. Figure 2A confirms the original May
results. As S increases, the probability that the equilib-
rium point is stable is 1 for lower richness (S<50 in our
example), but it declines very fast for higher richness,
even declining to zero for sufficiently large S. Indeed,
complexity begets instability. However, do unstable sys-
tems become extinct? In Figure 2B, we can see that this is
clearly not the case. This panel shows that, in rich unsta-
ble communities, at least one species exhibits unlimited
growth. Moreover, Figure 2C shows that species-rich com-
munities can be obtained: this panel shows the number of
species still alive at the end of the simulation. We observe
that a number of species go extinct (because the red curve
is lower than the dashed diagonal). However, after a tran-
sition, the number of species remaining alive increases lin-
early with increasing S, meaning that the proportion of
lost species decreases. Very large viable communities can
be built, and the greater the initial richness is, the greater
the viable community richness.

In the above simulations, populations can grow with
no limit: any population reaching the value of 1000 is
considered on its way to infinity. For more realistic
modeling, the GLV model is modified with an attenua-
tion factor that sets Nmax as the asymptotic limit that no

population can exceed (see Methods). In Figure 3, we rep-
resent the number of live species at equilibrium (i.e., the
number of persistent species) as a function of the initial
richness S. We also calculate the change in the mean
interaction strength, that is, the difference between the
mean interaction strength among the species alive at
equilibrium and the mean interaction strength among all
initial species. A deviation from zero indicates ecological
selection of interactions, which can be either positive
(tendency to select positive interactions) or negative (ten-
dency to select negative interactions).

Figure 3A shows that the modified GLV model does
not alter qualitatively the main result of Figure 2C:
starting from an initial community of richness S, a num-
ber of species are lost, but arbitrarily rich viable commu-
nities can still be built, which is shown by the fact that
the average number of persisting species increases with
no limit (red curve). Figure 3B shows that there is ecolog-
ical selection of positive interactions: the mean interac-
tion strength in the viable communities is greater than
that in the initial pool.

The crucial role of the sign of mutual interactions is
illustrated by Figure 4, in which we represent the propor-
tion of communities for which no species becomes

F I GURE 3 Effect of the initial community richness on the outcome of the modified generalized Lotka–Volterra dynamics. Panel

(A) shows, as expected, that the number of persistent species is lower than the number of initial species once the local stability of the initial

equilibrium point has been lost. However, most importantly, the number of persistent species still increases when increasing the initial

community richness. Panel (B) shows that, in the final community made up of the persistent species, the per capita interaction strength is,

on average, greater than that in the initial community, demonstrating that positive interactions are ecologically selected. The parameters for

sampling the interaction matrix are the same as those in Figure 2.
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F I GURE 4 Effects on the dynamics outcome when the interspecific interactions are either all negative (competition and amensalism;

panels A, C, E) or all positive (mutualism and commensalism; panels B, D, F). All intraspecific interactions are negative, and the parameters

for sampling the interaction matrix are the same as those in Figure 2. Local stability is lost very rapidly (panels A and B). Panel D displays

contrasting outcomes for the initially unstable equilibria with positive interactions: either the system converges to a new equilibrium

without extinction (points on the main diagonal), or almost all species become extinct (points close to the abscissa). The probability of either

of the outcomes occurring is approximately 0.5 (panel F).
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extinct. Species richness is still detrimental to stability,
whether the interactions are all negative (Figure 4A) or
all positive (Figure 4B). If they are all negative, persistent
systems are readily obtained, but the number of persis-
tent species cannot exceed a certain number (approxi-
mately 60–70 in the example of Figure 4C). If the
interactions are all positive, contrasting outcomes are
obtained at random (Figure 4D): either the system con-
verges to a new equilibrium with all species alive (points
on the diagonal) or almost all species go extinct (lower
points, close to the x-axis). These two outcomes occur
with an approximate 50–50 probability (Figure 4F).

Finally, we checked with additional simulations that
the patterns illustrated by Figures 2 to 4 are not qualita-
tively sensitive to connectance c and/or to interaction
strength variability σ (see Appendix S1: Figures S1–S11).
The effects are quantitative only, with no remarkably
qualitatively new pattern.

As previously mentioned, none of the numerous sim-
ulations had to be stopped with the time limit criterion.
In the unmodified GLV model, in all simulations, each
population either reached a nonzero equilibrium, went
extinct, or exploded. In the modified GLV model, all
populations converged to an equilibrium (either zero or
nonzero). This means that never-ending trajectories like
cyclic or chaotic regimes never occurred. We observed
that alternative steady states do exist: when varying the
perturbation only, one same system, with given parame-
ters, can reach different equilibrium points, with different
species surviving (see Appendix S1: Figure S12).

DISCUSSION

The well-known theoretical studies by R.M. May and fol-
lowers seemed to contradict the fact that many complex
viable ecosystems exist in nature. Our approach proposes
a simple reconciliation. We argue that locally unstable
systems must be considered viable when they escape
some local equilibrium and grow to some other state
(possibly losing a number of species but not all of them).
Very species-rich, complex viable systems can readily be
built. Richness and/or connectance are not obstacles to
system viability; on the contrary: the richer the species
pool is, and the more complex interspecific interactions
are, the more easily robust, highly efficient communities
can be formed. These properties cannot be observed
when using local stability as a proxy of viability
(Allesina & Tang, 2012; Hatton et al., 2024; May, 1972,
1973; Mougi & Kondoh, 2012, 2014).

This is entirely due to the effect of positive interac-
tions, not only in mutualistic and commensalistic situa-
tions, but also in antagonistic situations. In their absence,

that is, in purely competitive systems, Figure 4C shows
that species richness cannot exceed a certain limit. This
limit depends on the connectance c and on the interac-
tion strength variability σ (see Appendix S1: Figure S8):
the higher σ and/or the higher c, the higher the interac-
tion coefficients and the lower the numbers of coexisting
species. In the language of niche theory, species packing
limits the number of competing species that can coexist
(MacArthur & Wilson, 1967). This result fully echoes the
limiting similarity theory of competing species developed
by MacArthur and Levins (1967) and its extension to
species-rich competition communities by Vandermeer
(1970). These authors demonstrated theoretically that
there is a maximum number of species that can coexist
and that this number is a function of the mean interac-
tion strength, which is in line with our results displayed
in Figure 4C and in Appendix S1: Figure S8.

When only positive interactions are allowed, that is,
in purely mutualistic systems, it is well known that this is
a highly destabilizing situation (Allesina & Tang, 2012;
Goh, 1979). In approximately half of the cases, all
populations go extinct, as shown in Figure 4D. However,
the same figure shows that, in the other half of the cases,
all species survive and grow to their ceiling populations.
Thus, although mutualism is locally destabilizing, it is a
factor that helps persistence, not the opposite.

Positive interactions create ecological niches and
increase the number of species that can coexist. This has
recently been theoretically supported by Koffel et al.
(2021) by extending the classical niche theory, which
considers only competition for common resources, to
include positive feedback loops that permit niche
extension and, consequently, increase the number of
coexisting species. Empirically, positive interactions
have also been widely studied in plant communities
(Callaway, 2007), such as nitrogen fixation, shade for
seedlings, or pollen and seed dispersal by pollinators
and other animals (Bascompte & Jordano, 2014). Our
study shows the importance of positive interactions for
maintaining and extending niches, allowing an incre-
asing number of coexisting species.

Methodologically, the major innovation of our work is
that, using numerical simulation of dynamic systems, we
have been able to follow the time course of populations,
thus escaping from the limited scope of local stability ana-
lyses in ecology. This answers the complaint of Allesina
and Tang (2012) that, although natural systems generally
operate far from a steady state, the theoretical study of
large systems is still based on local stability for feasibility
reasons. With the latter approach, the essential role of pos-
itive interactions is condemned to silence.

Choosing the GLV model to represent community
dynamics can be questioned. Indeed, alternate models
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exist for pairwise interactions. Regarding pairwise com-
petition, the original Lotka–Volterra model is generally
accepted with no modification. Regarding pairwise mutu-
alism, authors commonly introduce a saturation factor in
order to avoid explosions (e.g., Mougi & Kondoh, 2012).
Regarding pairwise predation, the Lotka–Volterra model
of predator–prey interactions has been criticized, particu-
larly by one of the present authors (Arditi & Ginzburg,
2012), because the model ignores predator saturation
and predator interference. A large number of alternate
predator–prey models have been proposed by many
authors (e.g., Arditi & Ginzburg, 1989). However, it has
proven impossible to generalize these alternate models to
situations with more than one prey species and more
than one predator species: all attempts failed to satisfy
fundamental logical criteria (Arditi & Michalski, 1996).
The GLV model remains irreplaceable in abstract theo-
retical studies such as the present article.
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Figure	S1.	Analogous	to	Fig.	2A	in	the	main	text,	with	various	values	of	σ	and	c.		
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Figure	S2.	Analogous	to	Fig.	2B	in	the	main	text,	with	various	values	of	σ	and	c.	
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Figure	S3.	Analogous	to	Fig.	2C	in	the	main	text,	with	various	values	of	σ	and	c.	
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Figure	S4.	Analogous	to	Fig.	3A	in	the	main	text,	with	various	values	of	σ	and	c.		
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Figure	S5.	Analogous	to	Fig.	3B	in	the	main	text,	with	various	values	of	σ	and	c.		
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Figure	S6.	Analogous	to	Fig.	4A	in	the	main	text,	with	various	values	of	σ	and	c.		
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Figure	S7.	Analogous	to	Fig.	4B	in	the	main	text,	with	various	values	of	σ	and	c.		
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Figure	S8.	Analogous	to	Fig.	4C	in	the	main	text,	with	various	values	of	σ	and	c.		
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Figure	S9.	Analogous	to	Fig.	4D	in	the	main	text,	with	various	values	of	σ	and	c.		
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Figure	S10.	Analogous	to	Fig.	4E	in	the	main	text,	with	various	values	of	σ	and	c.		
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Figure	S11.	Analogous	to	Fig.	4F	of	the	main	text,	with	various	values	of	σ	and	c.		
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Figure	S12.	This	figure	shows	that	alternative	steady	states	exist	and	that	they	do	not	change	
our	conclusions.	The	parameters	for	sampling	the	interaction	matrices	are	c=0.7	and	σ=0.2.	
For	 any	 given	 value	 of	 S,	 the	 various	 vertically	 aligned	 points	 result	 from	 different	
perturbations	 of	 the	 same	 initial	 equilibrium	 and	 the	 same	 interaction	matrix.	 Since	 the	
points	 are	 spread	vertically,	 this	means	 that	 the	various	 simulations	 reach	different	 final	
states,	with	different	species	surviving.		
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