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1 Introduction

As in non-cooperative game theory, a central issue in the theory of network formation is
the analysis of equilibrium or stability, i.e. a situation where no player wants to change his
links. Myerson (1991) proposes a simultaneous move game of network formation, where
players announce their desired links non-cooperatively, but the standard formulation
of Nash equilibrium in the Myerson network formation game has proved to be a non-
satisfying concept due to coordination problems.1 In the seminal contribution of Jackson
and Wolinsky (1996) this problem is solved by introducing a different concept of stability
called pairwise stability. In a pairwise stable network no two players want to form a
mutual link and no player wants to cut a link unilaterally. This concept of stability is
used and has been refined widely in the literature of network formation games. Jackson
and Wolinsky (1996) highlight a central problem in strategic network formation: There is
a tension between stability and efficiency, meaning that individual interest can be at odds
with societal welfare.2 Since then, there was a flourishing literature on specific situations
of strategic network formation of which two small surveys can be found in Jackson (2004)
and Goyal and Joshi (2006b). Indeed, in various models it can be observed that stable
networks do not coincide with efficient networks.

What has not been explicitly studied are the sources of inefficiency. The question is
particularly, how do stable networks generally differ from efficient networks? And, being
in an inefficient (e.g. stable) situation, how can welfare be improved without reshuffling
the whole network structure?

We approach these questions by analyzing the role of externalities (also called spillovers) of
link formation. Simply put, positive externalities define situations where agents can profit
(at least do not suffer) from others who form a relationship; while negative externalities
mean that they do not benefit from that action. We argue that both types of externalities
correspond to natural settings. Network formation games where direct and indirect
connections are the source of benefits represent examples for positive externalities. On
the other hand, in a context of competition or rival goods, negative externalities occur.

For our analysis, we employ several notions of stability and efficiency. In particular, we
use three well-known notions of stability: pairwise stability, as introduced in Jackson
and Wolinsky (1996), pairwise Nash stability, a simple refinement of the former which
incorporates the property of Nash equilibrium, and pairwise stability with transfers,
which stems from a network formation game allowing for transfers.3 For the analysis
of the welfare properties of the stable networks, we use a very general set of welfare

1Any link that is desired by both players is not necessarily present in Nash equilibrium if neither
player announces it, e.g. the empty network is always an equilibrium.

2See Jackson and Wolinsky (1996), Theorem 1, for the general statement about the tension of pairwise
stable and efficient networks. Note that this can be relaxed for strongly stable networks (see Dutta and
Mutuswami, 1997, Theorem 4.19.).

3See Bloch and Jackson (2007) for different approaches to network formation with transfers. For a
comparison of the equilibrium concepts see Bloch and Jackson (2006) and Calvó-Armengol and Ilkiliç
(2009).
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functions, which have to satisfy only a monotonicity property.4 Given a welfare function,
we introduce the notion of over-connected and under-connected networks. While usually
networks are classified as either efficient (welfare maximizing) or inefficient, the two
notions further describe inefficient networks. In essence, a network is over-connected
if welfare can be improved by deleting some links, while a network is under-connected if
an addition of links is welfare improving. We show how these notions help identify the
sources of inefficiency and can be applied to characterizing stable and efficient networks.

The main result for positive externalities is that there is no stable network that is over-
connected (Theorem 1). This result holds directly for the notion of pairwise Nash stability,
while it takes an additional assumption (“concavity”) to make it hold for the notion of
pairwise stability. The result is, however, not dependent on the particular shape of the
utility functions nor on the degree of homogeneity. A direct interpretation of Theorem 1
is that under positive externalities a stable network cannot be socially improved by the
severance of links. In fact, the statement is even stronger: Under positive externalities any
network that is contained in a pairwise Nash stable network is weakly Pareto dominated
by the former. We illustrate the implications of the result in an example taken from the
literature, the connections model (cf. Jackson and Wolinsky, 1996).

For negative externalities a corresponding result cannot be established immediately. In
the context of transfers, however, there is an analogous result: No stable network can be
socially improved by the addition of links (Theorem 2). This means that under negative
externalities no stable network can be socially improved by the addition of links. While the
qualitative statement is analogue to Theorem 1 on positive externalities, the two results
differ significantly. Theorem 2 applies to the notion of pairwise stability with transfers,
it requires an additional assumption (“concavity”), and it is restricted to a special case
of a welfare function (the sum of individual utilities). We discuss why these restrictions
are needed under negative externalities and how they can be relaxed. Finally, we apply
Theorem 2 to a model of patent races (Goyal and Joshi, 2006b) to illustrate how our
results can contribute to and extend previous results on the characterization of the set of
stable networks (Proposition 2).

Our results are applicable to many network formation games from the literature. Ex-
amples for positive externalities include the provision of a pure public good and a model
of market sharing agreements (both introduced in Goyal and Joshi, 2006b); and the
connections model (Jackson and Wolinsky, 1996). Examples for negative externalities
include the model of patent races (Goyal and Joshi, 2006b), a co-author model (Jackson
and Wolinsky, 1996), and a model of free trade agreements (Goyal and Joshi, 2006a).

This paper is organized as follows: The subsequent Section 2 formally defines the model.
The results on positive externalities are presented and discussed in Section 3. The results
on negative externalities are presented and discussed in Section 4. In Section 5 we
conclude.

4The utilitarian welfare function, the sum of individual utilities, satisfies this notion. For some of the
results, we actually need this specific version of a welfare function.
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2 Model and Definitions

Let N = {1, ..., n} be a set of agents/players, with n ≥ 3. A network g is a set of unordered
pairs {i, j} with i 6= j ∈ N , that represent the bilateral relations. Thus, ij := {i, j} ∈ g
means that player i and player j are linked in network g. Let gN be the set of all subsets
of N of size two and let G be the set of all possible graphs, G = {g : g ⊆ gN}. By Ni(g)
we denote the neighbors of player i in network g, Ni(g) := {j ∈ N | ij ∈ g}. Similarly,
Li(g) denotes the set of player i’s links in g, Li(g) := {ij ∈ g | j ∈ N}. We define
di(g) := |Li(g)| = |Ni(g)|, as the number of player i’s links, called player i’s degree.

For each player i ∈ N a utility function ui : G → R expresses his preferences over the
set of possible graphs. u = (u1, ..., un) denotes the profile of utility functions. Decisions
to form or to sever links typically do not depend on absolute utility, but on changes
in utility. Let mui(g, l) be the marginal utility of player i of deleting a set of links l
in network g, that is mui(g, l) := ui(g) − ui(g \ l) for l ⊆ g. Equivalently, we denote
mui(g ∪ l, l) := ui(g ∪ l) − ui(g) as the marginal utility of adding the set of links l to
network g.

From the vast literature of network formation, we employ three of the most common
stability notions. The first notion is based on a cooperative framework and was introduced
by Jackson and Wolinsky (1996).

Pairwise Stability. A network g is pairwise stable (PS) if no link will be cut by a single
player, and no two players want to form a link:
(i) ∀ij ∈ g, ui(g) ≥ ui(g\ij) and uj(g) ≥ uj(g\ij), and
(ii) ∀ij /∈ g, ui(g ∪ ij) > ui(g) ⇒ uj(g ∪ ij) < uj(g).

This well-known definition captures the idea that links can be severed by any involved
player, whereas the formation of a link requires the consent of both players. Pairwise
stability is a basic notion that can be refined in multiple ways. One of the refinements is
the property of pairwise Nash stability. A network is pairwise Nash stable (PNS) if there
exists a Nash equilibrium in the corresponding link formation game (see Myerson, 1991)
that supports this network and no link will be added by two players. This boils down to
the following conditions.

Pairwise Nash Stability. A network g is pairwise Nash stable (PNS) if the following holds:
(i) ∀i ∈ N, 6 ∃l ⊆ Li(g) : ui(g \ l) > ui(g) and
(ii) ∀ij /∈ g, ui(g ∪ ij) > ui(g) ⇒ uj(g ∪ ij) < uj(g).

In contrast to pairwise stability, pairwise Nash stability captures the idea that players are
able to delete multiple links simultaneously. The third notion of stability is based on the
idea of transfers and can be found in Bloch and Jackson (2007).

Pairwise Stability with Transfers. A network g is pairwise stable with transfers (PSt) if
there does not exist any pair of players that can jointly benefit by adding, respectively
cutting, their link:
(i) ∀ij ∈ g, ui(g) + uj(g) ≥ ui(g \ ij) + uj(g \ ij) and
(ii) ∀ij /∈ g, ui(g) + uj(g) ≥ ui(g ∪ ij) + uj(g ∪ ij).
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We denote by [PS(u)], [PNS(u)], and [PSt(u)] the sets of pairwise stable, pairwise Nash
stable, and pairwise stable networks with transfers, respectively, for a given profile u of
utility functions.

While stability tries to answer which networks emerge based on individual preferences,
efficiency addresses the evaluation of networks from a societal point of view. To formally
capture efficiency, we use a welfare function w : G → R that typically (but not necessarily)
is only dependent on the vector of utilities of all players, given a network g. The most
commonly used version of a welfare function is the utilitarian welfare function, which
simply sums up the utility of all players, wu(g) =

∑

i∈N ui(g). For some of our results,
however, an even weaker way of aggregating utility is sufficient. We only require a welfare
function to satisfy the following property.

Definition 1. A welfare function w satisfies monotonicity if
(i) ui(g) ≥ ui(g

′) ∀i ∈ N =⇒ w(g) ≥ w(g′), and
(ii) ui(g) ≥ ui(g

′) ∀i ∈ N and ∃j ∈ N : uj(g) > uj(g
′) =⇒ w(g) > w(g′).

This assumption is a very weak requirement for a welfare function: A welfare function
should evaluate a network g at least as high as a network g′ if all players i ∈ N evaluate g
at least as high as g′. Monotonicity assures that the welfare function preserves the Pareto
ordering of the networks. Given a welfare function w, let us define efficiency.

Efficiency. A network g∗ is called efficient with respect to the welfare function w if it is
a welfare maximizing network, that is w(g∗) ≥ w(g) ∀g ∈ G.

We introduce the following two definitions in order to describe non-efficient networks.

Definition 2. A network g is called over-connected (with respect to the welfare func-
tion w) if ∃g′ ⊂ g such that w(g′) > w(g).

Definition 3. A network g is called under-connected (with respect to the welfare func-
tion w) if ∃g′ ⊃ g such that w(g′) > w(g).

A network is over-connected if it is “too dense” in the sense that overall welfare can be
improved by cutting links. Similarly, under-connected networks are “not dense enough.”
Efficient networks are neither over-connected nor under-connected. Inefficient networks,
however, can satisfy both, one, or none of these two properties. Thus, the two definitions
help classify inefficient networks. To shed some light into the tension between stability
and efficiency, we will ask whether and under what conditions stable networks are over-
connected or not under-connected, respectively under-connected or not over-connected.

3 Positive Externalities

Positive externalities in network formation games simply capture that players experience
positive effects on their utility when others form a link. As defined below, a link formed
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by two players cannot decrease other players’ utility.5

Definition 4. A utility function ui satisfies positive externalities if ∀g ∈ G, ∀jk : i 6∈
{j, k}, it holds that

ui(g ∪ jk) ≥ ui(g).

A profile of utility functions u satisfies positive externalities if all utility functions satisfy
positive externalities.

Being required for any network, any link, and any player, this property seems to be quite
restrictive. However, we argue that this property is apparent in many contexts of network
formation. Some examples from the literature are provision of a pure public good (Goyal
and Joshi, 2006b), market sharing agreements (Belleflamme and Bloch, 2004), and the
connections model (Jackson and Wolinsky, 1996), which we discuss below.

In case of a utility function that is additive separable into costs and benefits, positive
externalities are implied by a simple monotonicity property of the benefit function. In
this context, players have to carry the costs of their own links, but share the benefits
with others. Intuitively, individual incentives to establish a link might be lower than its
collective value because of positive externalities.

Theorem 1 formalizes this intuition. More precisely, it shows that a pairwise Nash stable
network can never be socially improved by the deletion of links.

Theorem 1. If a profile of utility functions u satisfies positive externalities, then no
pairwise Nash stable network is over-connected with respect to any monotonic welfare
function w.

The proof of this and all following statements can be found in the appendix. To prove this
result, we show that no player is better off in a subnetwork g′ of a pairwise Nash stable
network g. Pairwise Nash stability implies that a player cannot prefer a network g̃(⊂ g)
that has only been reduced by some of his own links. Because of positive externalities, he
cannot prefer a subnetwork g′ ⊂ g̃ of the reduced network. The argument holds for any
player such that the monotonicity property of the welfare function establishes the result.
Note that this also implies that a pairwise stable network weakly Pareto dominates any
subnetwork: Deleting links makes no player better off.

In the proof of Theorem 1 we use the property of pairwise Nash stable networks that no
player can benefit by unilaterally severing a set of own links.6 With the notion of pairwise
stability, however, each link is considered one by one. In order to apply Theorem 1 to the
weaker notion of pairwise stability we need an additional assumption.

5Externalities in this case capture the effects of the decision of two players forming a link on other
players’ utility. This is different to the meaning of externalities in the context of markets. Note also that
we have not required that the inequalities are strict.

6Note that we picked pairwise Nash stability for illustrative reasons. In fact the proof of Theorem 1
shows that Nash stability, i.e. property (i) of pairwise Nash stability, is already sufficient for the result.
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Definition 5. A utility function ui is concave (in own links) if ∀g ∈ G, and ∀li ⊂
Li(g

N \ g), ∀ij ∈ g it holds that

mui(g, ij) ≥ mui(g ∪ li, ij).

A profile of utility functions is concave if all utility functions are concave.

The property requires that the marginal utility of a link is decreasing in the set of links
the player has already. Hellmann (2009) shows that this concavity property is equivalent
to two notions we find in the literature (see Lemma 3 in the appendix). Concavity
builds a bridge between the notion of pairwise Nash stability and pairwise stability: If
a profile of utility functions is concave, then the two stability notions coincide, that is
[PNS(u)] = [PS(u)].7 Thus, we get the following Corollary to Theorem 1.

Corollary 1. Suppose a profile of utility functions u satisfies positive externalities and
concavity, then no pairwise stable network is over-connected with respect to any monotonic
welfare function w.

What has been implied by pairwise Nash stability in Theorem 1, is now assured by pairwise
stability together with the assumption of concavity: In a stable network no player can
improve by cutting a set of his links.

The notions of stability that are used in Theorem 1 and Corollary 1 are fairly weak.
The statement, also applies to any refinement of pairwise stability, e.g. bilateral stability
(Goyal and Vega-Redondo, 2007), unilateral stability (Buskens and van de Rijt, 2008),
strong stability (Dutta and Mutuswami, 1997), and weak stability (Dutta and Mutuswami,
1997). Moroever, for the notion of pairwise stability with transfers it is possible to state
a similar result, which is however restricted to the utilitarian welfare function.

Theorem 1 excluding over-connectedness has trivial implications for the complete and
empty network: As any network is a subnetwork of the complete network, it follows that
(a) if the complete network is stable, then it must also be efficient. Since any network is
a supernetwork of the empty network it follows that, (b) if the empty network is uniquely
efficient, then no other network can be stable. Next, we show how Theorem 1 applies to
a model from the literature.

The Connections Model Revisited

The connections model was introduced in Jackson and Wolinsky (1996). It models the
flow of resources (like information or support) via shortest paths in a network. Let
dij(g) denote the distance of players i and j in network g (which is defined to be ∞ for
unconnected pairs), then the utility of each player can be written as

uCO
i (g) = wii +

∑

j 6=i

δdij(g)wij −
∑

j:ij∈g

cij, with δ ∈ (0, 1). (1)

7See Calvó-Armengol and Ilkiliç (2009).
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wij stands for the undiscounted value of a connection to player j and cij stands for the
cost of maintaining a link with agent j. It is easy to see that the connections model
satisfies positive externalities. If ij forms in some network g, then the utility of a player
k 6= {i, j} either does not change or increases as some of k’s distances are shortened
because dkm(g ∪ ij) ≤ dkm(g) for all m. Consequently (by Theorem 1), no Nash stable
network can be over-connected w.r.t. any monotonic welfare function.

Moreover, it can be shown that uCO(·) satisfies concavity. By the result of Hellmann
(2009) it suffices to show that uCO satisfies convexity in own current links, that is ∀i ∈
N, ∀g ∈ G, and ∀l ⊆ Li(g), it holds that mui(g, l) ≥

∑

ij∈l mui(g, ij). This has been done
by Calvó-Armengol and Ilkiliç (2009) for the symmetric connections model. We make a
straightforward generalization of their proof.8

Lemma 1. The heterogeneous connections model satisfies concavity in own links.

Consequently (by Corollary 1), no pairwise stable network can be over-connected w.r.t any
monotonic welfare function. While stable networks depend on the dyadic specifications of
value and costs (wij, cij), the results excluding over-connectedness imply that the welfare
of a stable network can never be improved by severing links.

There are more specific results for the connections model in its symmetric version, setting
wij = 1, cij = c (∀i 6= j) and considering the utilitarian welfare function wu only. This
has been studied in Jackson and Wolinsky (1996), Jackson (2003), and Hummon (2000).
Jackson and Wolinsky (1996, Prop. 1 and Prop. 2) show that for low costs (c < δ−δ2) the
complete network is efficient (and uniquely pairwise stable); for medium costs (δ − δ2 <
c < δ + n−2

2
δ2) the star network is efficient; while for very high costs (c > δ + n−2

2
δ2)

the empty network is efficient. This famous statement of inefficiency in the connections
model is the following: “For δ < c, any pairwise stable network which is non-empty is
such that each player has at least two links and thus is inefficient.”9

What does our result excluding over-connectedness add to this discussion of inefficiency?
First, there is the above mentioned trivial implication (b) for the empty network: Since
any network is a supernetwork of the empty network, it follows that if the empty network is
uniquely efficient, then no other network can be stable. Thus, the statement of inefficiency
is restricted to δ < c < δ + n−2

2
δ2. Second, the result on over-connectedness adds a new

point of view on the flavor of inefficiency. This can be illustrated in the following example
which is also taken from Jackson and Wolinsky (1996, Ex. 1).

Example 1. The network in fig. 1, called “Tetrahedron”, is stable for costs c > δ, where
the star network is uniquely efficient.10 The Tetrahedron is “too dense” in the sense that
it has 18 links, while the efficient network has 15. Accordingly, Jackson and Wolinsky
(1996, p. 51) label it as “over-connected.” However, by Theorem 1 and Corollary 1, it

8In fact, such a generalization can be made for any “distance-based” utility function in the sense that
benefits are decreasing with distances and costs only depend on direct links.

9cf. Jackson and Wolinsky (1996), p. 51.
10More precisely, gTetra is pairwise stable iff δ− δ5 + δ2 − δ4 + δ2 − δ5 +2(δ3 − δ4) ≤ c ≤ δ− δ8 + δ2 −

δ7 + δ3 − δ6 + 2(δ4 − δ5).
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Figure 1: Example of an inefficient network (“Tetrahedron”).

is not over-connected according to the definition used in this paper. This means that the
welfare of the Tetrahedron cannot be improved by leaving out any set of its links. Moreover,
we claim that the Tetrahedron is under-connected in the parameter range for which it is
pairwise stable. In the appendix (Prop. 1) we show that the addition of a link between the
players “2” and “13” would strictly improve utilitarian welfare. The same point as in the
Tetrahedron can be illustrated in many other stable networks in the connections model:
they are under-connected for any costs for which they are pairwise stable.

The example illustrates two different viewpoints on inefficiency. From the viewpoint of a
social planner that can unrestrictedly manipulate a given network, some stable networks
are “too dense” in the sense that less links are needed to form the efficient one. From
the viewpoint of a social planner who is restricted to either foster or hinder the formation
of links (e.g. by taxes or subsidies), many stable networks in the connections model are
“not dense enough” (under-connected), while none is “too dense” (over-connected).

4 Negative Externalities

Negative externalities in network formation occur, when the addition of a link cannot be
beneficial for the players who are not involved in this link. Formally, we speak of negative
externalities if the following holds.

Definition 6. A utility function ui satisfies negative externalities if ∀g ∈ G, ∀jk : i 6∈
{j, k}, it holds that

ui(g ∪ jk) ≤ ui(g).

A profile of utility functions u satisfies negative externalities if all utility functions satisfy
negative externalities.

When considering negative externalities in economics, equilibrium analysis usually shows
that individuals rather do “too much” (pollute, etc.) than being socially optimal. Players
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facing negative externalities are thus expected to create “too dense” networks. One
example is the co-author model introduced in Jackson and Wolinsky (1996). In this model,
a researcher who forms a new collaboration does not internalize the negative effects on
her current collaborators. Formally, it can be shown that any pairwise stable network in
this co-author model is over-connected with respect to utilitarian welfare. However, such
a result does not hold in all models satisfying negative externalities. It may even happen
that a stable network is under-connected because of the following reason. It might happen
that a player rejects a link that is highly beneficial to the proposing player. This link
could potentially lead to higher welfare.11

A simple way out of this issue is using the stability concept pairwise stability with
transfers. This concept helps ensure that any single link that is not contained in a pairwise
stable network with transfers cannot be welfare improving. Analogously to Corollary 1,
we require concavity (see Definition 5) for our main result on negative externalities to
ensure that there is no set of links that would improve welfare.

Theorem 2. Suppose a profile of utility functions u satisfies negative externalities and
concavity, then no network g ∈ G, which is pairwise stable with transfers, is under-
connected with respect to the utilitarian welfare function.

As always, the proof can be found in the appendix. Pairwise stability with transfers
differs from pairwise stability significantly. In general, neither [PS(u)] ⊆ [PSt(u)] nor
[PS(u)] ⊇ [PSt(u)]. Although the concepts differ, we can easily find properties of the
utility function that are sufficient to ensure equivalence of both stability concepts. It can
be shown that the property of pairwise sign compatibility in Chakrabarti and Gilles (2007)
is sufficient for [PS(u)] = [PSt(u)]. Thus, from Theorem 2 we can conclude that also no
pairwise stable network (and hence no Pairwise Nash stable network) is under-connected
in the presence of pairwise sign compatibility, negative externalities, and concavity.

For the results, so far, it has been crucial whether network formation requires bilateral
consent or can be done unilaterally. In the definitions of pairwise stability and pairwise
Nash stability, it is implicitly assumed that link deletion can be done unilaterally, while
link creation requires the consent of both involved players. If we allow for opposite link
formation rules, then the assumptions made for the result on negative externalities, i.e.
Theorem 2, are required for excluding over-connectedness in the presence of positive
externalities, while the non-under-connectedness of stable networks in case of negative
externalities are then analogous to the results we have on positive externalities.12 For
example, pairwise Nash stability incorporates deviations of simultaneously deleting several
links. If we consider a stability notion that incorporates the players’ ability to unilaterally
add a set of links, we can formulate a result that is fully analogous to Theorem 1: Networks
that are stable in that sense, can be shown to be not under-connected with respect to any
monotonic welfare function.

11This issue can also be considered as some kind of external effect. However, we prefer to distinguish
utility considerations of the directly involved agents from effects to non-involved agents.

12Thus, our results can be restated in terms of bilateral or unilateral link creation/deletion rules or by
using notions of addition proofness and deletion proofness.
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There are many examples in the literature of network formation which satisfy negative
externalities (and other properties required for Theorem 2).13 The co-author model
introduced in Jackson and Wolinsky (1996) is mentioned above. Goyal and Joshi (2006a)
present a model of free trade agreements that satisfies negative externalities. In order to
apply Theorem 2 we need concavity, which only holds on a restricted domain, G̃ := {g ∈
G | di(g) ≥ 1 ∀i ∈ N}. However, we can extend Theorem 2 straightforwardly to a
restricted domain. Thus, we conclude that no stable network g ∈ G̃ is under-connected
within the set of networks G̃ in that model of free trade agreements. Finally, Goyal and
Joshi (2006b) introduce a model of Patent Races. As an example of Theorem 2, we discuss
this model more intensively in the next subsection.

Patent Races

Goyal and Joshi (2006b) derive this model as a variation of the classical patent race
model.14 In addition to the classical model, firms can join R&D collaborations to acceler-
ate research. The first firm to develop the new product is awarded a patent. The random
time τ(di(g)) at which the innovation happens is given by

Pr({τ(di(g)) ≤ t}) = 1− exp(−di(g)t).

Assuming risk neutrality, payoff of 1 in case of receiving the patent and 0 else, and a
discount factor ρ, the expected payoff of firm i is the following:

uPR
i

(

di(g), D(g−i)
)

= Et[exp(−ρt)Pr(τ(di(g)) = t) Π
j 6=i

Pr(τ(dj(g)) > t)]− di(g)c

=
di(g)

ρ+D(g)
− di(g)c =

di(g)

ρ+ 2di(g) +D(g−i)
− di(g)c,

where g−i represents the network obtained by deleting player i and all his links and
D(g) :=

∑

i∈N di(g). This model satisfies negative externalities since links of other firms
reduce the probability to innovate firstly. Also, since uPR

i is a concave function of di(g),
it is concave according to Definition 5. From Theorem 2 we can thus conclude that no
pairwise stable network with transfers is under-connected. In fact, it is straightforward
to calculate the efficient networks since the utilitarian welfare is given by:

wPR(g) =
∑

i∈N

uPR
i (g) =

∑

i∈N

(

di(g)

ρ+D(g)
− di(g)c

)

=
D(g)

ρ+D(g)
−D(g)c.

In this case the utilitarian welfare only depends on the total number of links and thus
any network that contains the optimal number of total links is efficient. The distribution

13Any example mentioned here is discussed more extensively (with respect to our results) in an earlier
working paper version of this paper (Buechel and Hellmann, 2009).

14See Dasgupta and Stiglitz (1980) among others.
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of links and the structure of the network do not matter for efficiency. We can easily
calculate that for ρ

(ρ+2(k+1))(ρ+2k)
< c < ρ

(ρ+2k)(ρ+2(k−1))
any network which contains k links

is efficient and no other networks are efficient.

It requires a little bit more to characterize stable networks. However, for this matter we
can apply Theorem 2 in order to bound the total number of links.

Proposition 2. Suppose that ρ

(ρ+2k+2)(ρ+2k)
< c, then all networks g which are pairwise

stable with transfers have to contain more than k links, in other words D(g) ≥ 2k.

In their paper, Goyal and Joshi (2006b) only find a partial characterization for the set
of pairwise stable networks. By applying Theorem 2 we were able to contribute to their
characterization. This example shows that our theorems not only describe the tension
between stability and efficiency, but can also be applied to characterize the stable networks
(resp. the efficient ones).

5 Concluding Remarks

We have introduced the notion of over-connected and under-connected networks in order
to contribute to a better understanding of the tension between stability and efficiency
in situations of strategic network formation. An over-connected network can be socially
improved by the deletion of links; an under-connected network can be socially improved
by the addition of links. In that way we relate inefficient outcomes to externalities of link
formation.

The basic argument is that positive spillovers/externalities lead to situations where agents
are not willing to form links, although it would be collectively beneficial. Negative
externalities have the opposite effect: agents form links without internalizing the loss of
utility of other agents. It is illustrated in specific models, that inefficient networks in one
setting (positive externalities) are under-connected (e.g. the connections model), while
the inefficient networks in the other setting (negative externalities) are over-connected
(e.g. the co-author model). However, this observation does not hold in general. What
can be shown generally, is the following: For positive externalities no stable network
can be over-connected (Theorem 1 and Corollary 1); for negative externalities no stable
network can be under-connected when some other conditions are met (Theorem 2). Thus,
the stable networks in one setting cannot be improved by the deletion of links, while the
stable networks in the other setting cannot be improved by the severance of links.

Despite their intuitive character, our results are not trivial. As the analysis shows
externalities are not the only source of inefficiency. Other sources of inefficiencies in
the bilateral formation of links are miscoordination of actions in the Consent Game,15

restrictions on possible deviations, and rejection power in the Consent Game. These

15By Consent Game we mean the link announcement game introduced in Myerson (1991).
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three sources of inefficiency are addressed in the basic notions of stability that we use
in our paper. Pairwise stability, for instance, solves the issue of miscoordination in the
Consent Game. The second issue, however, is a problem of pairwise stability itself since
links are considered one by one. A set of links can have contrary effects than each single
link. This is solved by considering pairwise Nash stability (or by assuming concavity of
the utility functions). The third case of inefficiency can be illustrated in the example
where a player rejects a link although the partner would have benefited heavily from it.
This can be ruled out by the introduction of transfers (as used in Theorem 2).

In the paper, we have restricted our attention to the standard formalization of networks
as undirected graphs without weights. It can be shown that our results can be straightfor-
wardly extended to the formation of directed unweighted and directed weighted networks
as introduced in Bala and Goyal (2000), respectively Rogers (2006). Furthermore, for
positive externalities it is possible to show that Nash equilibria are not over-connected
in a framework of formation of undirected and weighted networks as introduced, e.g. in
Bloch and Dutta (2009).16

The contribution of our results is two-fold. First, they shed light into the general tension
between stability and efficiency giving a social planner a clear signal in which situations
rather to impede and when to promote the formation of relationships. Second, the results
can be used in specific models to improve the characterization of stable and efficient
networks. We have illustrated this with two examples, while there are many other models
of strategic network formation that meet the required conditions. In particular, our results
do not rely on assumptions of homogeneous agents, nor on restrictions to certain notions
of stability or efficiency. We hope that future research will come up with more of such
interesting models accounting for the various nature of social and economic relationships.

APPENDIX

Proof of Theorem 1. Let g ∈ [PNS(u)] and suppose that u satisfies positive exter-
nalities. We show that for all g′ ⊂ g it holds that ui(g

′) ≤ ui(g) for all i ∈ N . Let
l := l(g, g′) = g \ g′ for some g′ ⊂ g, and denote li := li(g, g

′) = l ∩ Li(g) and l−i := l \ li.

Since g is pairwise Nash stable, all owners of a link prefer to have all their links in g, i.e.
ui(g) ≥ ui(g \ li).

Since u satisfies positive externalities, it holds for g̃ := g \ li that ui(g̃) ≥ ui(g̃ \ l−i)
(because player i does not own a link in l−i), i.e. l−i ∩ Li(g) = ∅). Therefore: ui(g) ≥
ui(g \ li) ≥ u((g \ li) \ l−i) = u(g′). The same argument holds for all i ∈ N , implying that

16In an earlier working paper version of this paper, we have introduced a general framework that allows
for the formation of undirected and (possibly) weighted networks, as well as directed and (possibly)
weighted networks. We show that the central results can be reestablished in this more general setup (see
Buechel and Hellmann, 2009).
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w(g) ≥ w(g′) for any welfare function satisfying monotonicity.

The following lemma from Hellmann (2009) is required for the proof of Corollary 1,
Theorem 2, and Lemma 1. Recall the formal definitions of concavity and convexity from
the literature: Convexity in own current links (Bloch and Jackson, 2007): A profile of
utility functions u is convex in own current links if ∀i ∈ N, ∀g ∈ G, and ∀l ⊆ Li(g) it
holds that mui(g, l) ≥

∑

ij∈l mui(g, ij). (1-)Concavity in own new links (Calvó-Armengol
and Ilkiliç, 2009): A profile of utility functions u is concave in own new links if for all
i ∈ N , for all g ∈ G and for all links l such that l ⊆ Li(g

N), and l ∩ g = ∅ the following
holds: mui(g ∪ l, l) ≥

∑

ij∈l mui(g ∪ ij, ij).17 For the definition of concavity in own links,
see Definition 5.

Lemma 2. (Hellmann, 2009)
The following statements are equivalent:

(1) u is concave (convex) in own links.

(2) u is concave (convex) in own new links.

(3) u is convex (concave) in own current links.

While it may seem odd that convexity in own current links is equivalent to concavity
in own new links and concavity in own links, the curvature of the utility function is the
same in all setups. Convexity in own current links is a somewhat unusual definition of
convexity of a utility function, since the effects of deleting links need to have a convex
curvature, which implies a concave curvature of the marginal effects of adding links. The
formal proof of equivalence can be found in Hellmann (2009).

Proof of Corollary 1. By Lemma 2 above concavity in own links is equivalent to
convexity in own current links. Calvó-Armengol and Ilkiliç (2009) show that (1-)convexity
in own links is sufficient for [PS(u)] = [PNS(u)]. Thus, Theorem 1 applies.

Proof of Theorem 2. Let g be pairwise stable with transfers. We show that for all g′ ⊃ g
it holds that

∑

i∈N ui(g
′) ≤

∑

i∈N ui(g). Suppose that u satisfies negative externalities
and concavity. For g′ ⊃ g, let l := g′ \ g and for each i ∈ N let li = l ∩ Li(g

′) and
l−i := l \ li(g, g

′). Since u satisfies negative externalities, it holds for all i ∈ N that:

ui(g
′) ≤ ui(g

′ \ l−i). (2)

Concavity is equivalent to concavity in own new links, which implies for all i ∈ N :

ui(g ∪ li)− ui(g) ≤
∑

j:ij∈li

ui(g ∪ ij)− ui(g). (3)

17In the published version Calvó-Armengol and Ilkiliç (2009) relabel this property as 1-strong
submodularity.
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Now, since g is pairwise stable with transfers (PSt), (2) and (3) imply:

∑

i∈N

(ui(g
′)− ui(g)) =

∑

i∈N

(ui(g ∪ li ∪ l−i)− ui(g))

(2)

≤
∑

i∈N

(ui(g ∪ li)− ui(g))

(3)

≤
∑

i∈N

(

∑

j:ij∈li

[ui(g ∪ ij)− ui(g)]
)

(∗)
=

∑

ij∈l

ui(g ∪ ij)− ui(g) + uj(g ∪ ij)− uj(g)
(PSt)

≤ 0,

where the equality (*) holds because for each link ij ∈ l it holds that ij ∈ l1(k) if and
only if k ∈ {i, j} and only links in l are considered.

Proof of Lemma 1. By Lemma 2 it suffices to show that uCO satisfies convexity in
own current links, that is ∀i ∈ N, ∀g ∈ G, and ∀l ⊆ Li(g), it holds that muCO

i (g, l) ≥
∑

ij∈l muCO
i (g, ij).

Denote κi(g, l) := {k ∈ N : dik(g) < dik(g \ l)} as the set of players whose distance to
player i increases when deleting the set of links l from network g. Since distances cannot
decrease when deleting links, we can rewrite marginal utility in the following way:

muCO
i (g, l) = wii +

∑

k 6=i

δdik(g)wik −
∑

k:ik∈g

cik − [wii +
∑

k 6=i

δdik(g\l)wik −
∑

m:im∈g\l

cim]

=
∑

k∈κi(g,l)

(δdik(g) − δdik(g\l))wik −
∑

ij∈l

cij.

Now, consider some network g, some player i and some set of player i’s links l ⊆ Li(g).
Suppose that |l| ≥ 2.18

To show the claim, let us assume the contrary, i.e. muCO
i (g, l) <

∑

ij∈l muCO
i (g, ij) .

mui(g, l) <
∑

ij∈l

mui(g, ij)

∑

k∈κi(g,l)

(δdik(g) − δdik(g\l))wik −
∑

ij∈l

cij <
∑

ij∈l

[

∑

k∈κi(g,ij)

(δdik(g) − δdik(g\ij))wik − cij
]

∑

k∈κi(g,l)

(δdik(g) − δdik(g\l))wik <
∑

ij∈l

∑

k∈κi(g,ij)

(δdik(g) − δdik(g\ij))wik (4)

To see that Eq. 4 cannot hold, note the following three properties of geodesic distances
that were also used in Calvó-Armengol and Ilkiliç (2009):

18For |l| < 2 the claim mui(g, l) ≥
∑

ij∈l mui(g, ij) trivially holds.
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1. ∀k ∈ N and ∀ij ∈ l, it holds that (δdik(g) − δdik(g\l))wik ≥ (δdik(g) − δdik(g\ij))wik.

2. For all ij, im ∈ l, it holds that κi(g, ij) ∩ κi(g, im) = ∅.

3.
⋃

ij∈l κi(g, ij) ⊆ κi(g, l).

Thus, we conclude that mui(g, l) ≥
∑

ij∈l mui(g, ij).

Proposition 1. In the symmetric connections model, gTetra is under-connected with
respect to the utilitarian welfare function for any parameters δ and c, for which gTetra

is pairwise stable.

Proof. We have to show that if δ and c are such that gTetra ∈ PS(uδ,c), then ∃g′ ⊃ gTetra

for which wδ,c(g
′) > wδ,c(g

Tetra). Specifically, we show that the condition

c ≤ δ − δ8 + δ2 − δ7 + δ3 − δ6 + 2(δ4 − δ5) := ub (5)

is necessary for stability, but sufficient for wδ,c(g
Tetra ∪ {2, 13}) > wδ,c(g

Tetra). The labels
of the players correspond to Figure 1.

The first part was done in Jackson and Wolinsky (1996) already. Suppose that c > ub,
then player 1 benefits from cutting {1, 2} (because his change in benefits is just ub).

For the second part denote by βi :=
∑

j 6=i δ
dij(g

Tetra∪{2,13}) −
∑

j 6=i δ
dij(g

Tetra) the marginal
benefits for player i and by ∆ :=

∑

i∈N βi the sum of marginal benefits. This allows us
to write

wδ,c(g
Tetra ∪ {2, 13}) > wδ,c(g

Tetra) ⇐⇒ ∆ > 2c. (6)

It is straightforward to derive that

β1 = β12 = δ2 − δ4 + δ3 − δ4

β2 = β13 = δ − δ5 + δ2 − δ4 + δ2 − δ5 + 2(δ3 − δ4)

β3 = δ2 − δ5 + δ3 − δ4 + δ3 − δ5

β4 = β7 = β9 = β15 = δ3 − δ4

β14 = δ2 − δ5 + δ3 − δ4 + δ3 − δ5,

and βi = 0 for all other i.

This yields

∆ = 2(δ − δ5) + 4(δ2 − δ4) + 4(δ2 − δ5) + 12(δ3 − δ4) + 2(δ3 − δ5). (7)

To show that ∆ > 2c under the condition c ≤ ub, it is sufficient to show that ∆ > 2ub
holds. Recall that,

2ub(g) = 2(δ − δ8) + 2(δ2 − δ7) + 2(δ3 − δ6) + 4(δ4 − δ5). (8)

Thus,
∆ > 2ub ⇐⇒ 6δ2 + 12δ3 − 20δ4 − 4δ5 + 2δ6 + 2δ7 + 2δ8 > 0 (9)

Numerically it can be checked that (9) holds for all δ ∈ (0, 1) (we used Maple).

15



Proof of Proposition 2. Let c < ρ

(ρ+2k+2)(ρ+2k)
, then for the welfare maximizing number

of links it holds that 1/2D∗(g) ≥ k. Since any network, which contains 1/2D∗(g) links is
welfare maximizing, any network, which has less than 1/2D∗(g) links is under-connected.
By Theorem 2 no pairwise stable network can be under-connected since uPR satisfies
negative externalities and concavity. Thus, any network g ∈ [PSt] has to contain at least
1/2D∗(g) ≥ k links.
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