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Abstract—In blockchain-based systems, such as Bitcoin’s
Proof-of-Work (PoW) protocol, it is expected that a miner’s
share of total block revenue is proportional to their share of
the network’s total hashing power. However, a deviation to this
behavior is the selfish mining strategy, an attack vector discovered
by Eyal and Sirer in 2014. This strategy may lead to a miner
earning more than their “fair share”. As a result, Bitcoin’s
security assumption of an honest majority may not be sufficient.
In this paper, in order to verify whether selfish mining is indeed a
profitable strategy in PoW systems, we introduce an agent-based
model to simulate the dynamics of selfish mining behavior. The
model is by design minimalistic allowing us to analyze the effect
of network latency, hashing power distribution, and network
topology on relative revenue of selfish miners. We find that for
high levels of latency, selfish mining is always a relatively more
profitable strategy, and the results turn out to be very robust
to changes in the network topology. In addition, we find that
the hashing power distribution following power laws, as found
empirically, can make it harder for selfish miners to be profitable.
Our analysis confirms the main observations that selfish mining is
always relatively more profitable for hashing powers representing
more than one third of the total computing power. Further, it also
confirms that selfish mining behavior could cause a statistically
significant high probability of contiguously mined blocks.

Index Terms—Blockchain, Proof of Work, Selfish mining,
Agent-based Model, Complex systems modelling

I. INTRODUCTION

In 2014, Eyal and Sirer [1] introduced an attack vector on
the Bitcoin protocol. They suggest that a miner that controls
more than one third of the network’s computational resources
may break Bitcoin’s incentive compatibility. They find that a
miner strategically deviating from the Bitcoin protocol may
lead to an increase in their relative revenue. They call this
strategy selfish mining. In short, selfish mining aims to make
honest miners waste their computational resources on blocks
that are destined to not be part of the main chain, i.e. get no
block reward. The selfish miner may achieve this by only re-
leasing newly mined blocks strategically, as opposed to naively
always broadcasting them immediately. If a selfish miner is
relatively more profitable they can invest more resources into
computational hardware, further increasing their share of the
network’s computational resources. This cycle may eventually

* is corresponding author

culminate in the selfish miner controlling the majority of the
network and thus breaking Bitcoin’s incentive compatibility.

Given the far reaching implications of this attack vector, it
is worth investigating the dynamics of selfish mining within
a network with block propagation delay. To achieve this, we
introduce an agent-based model to study the selfish mining
attack. Our main research questions are:
• RQ1: What is the effect of network latency on selfish

mining?
• RQ2: What is the effect of network topology on selfish

mining?
• RQ3: What is the effect of heterogeneous hashing power

distributions on selfish mining?
• RQ4: Which observable characteristics does selfish min-

ing produce in the sequence of blocks appended to the
main chain?

The paper is organized as follows: Section II advances the
concept of selfish mining and provides a literature review; Sec-
tion III introduces the modelling approach and Section IV the
results and limitations. Finally, Section V draws conclusions
and poses venues for future research.

II. RELATED LITERATURE

Eyal and Sirer [1] first introduced the attack vector selfish
mining, also sometimes referred to as block withholding [2].
They show that under certain conditions a deviation from the
standard Bitcoin protocol may be a more profitable strategy
for a miner.

Many extensions to selfish mining strategies have been
proposed, such as stubborn mining and publish-n strategy [3]–
[5]. As a response, approaches to defend honest actors against
selfish mining have been proposed. They can be categorized
into two approaches: 1) making fundamental changes to the
block validity rules, for example ZeroBlock [6]: A timestamp-
free solution which requires that each block must be generated
and received by the network within a maximum acceptable
time interval, and 2) decreasing the probability of honest
miners working on the selfish miner’s chain during a fork, for
example weighted FRP [7]: Here miners compare the weight
of the chains instead of their length. In addition, it is debated
whether the selfish mining strategy is actually profitable in
practice: Some studies indicate that selfish mining may let
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attackers gain extra revenue and break the balance between
revenue and mining power [3], while others argue that selfish
miners can never earn more revenue but only put themselves
at risk for no gain [8].

Li et al. in 2020 [9], [10] proposed a method for detecting
selfish mining behavior in empirical networks. Their central
idea is to exploit the increased probability for selfish miners
to publish multiple blocks in a row. They assume that selfish
miners always use the same address for the coinbase transac-
tion (block reward) so that they can be identified as the same
miner. They find evidence of selfish mining in Proof-of-Work
protocols (mainly those with smaller number of nodes).

In 2021, Tessone et al. [11] introduced a minimalistic
stochastic model of consensus in blockchain-based systems,
with Proof-of-Work as a primary example. The authors show
use as control parameter the ration between network delay
and interblock time, showing a rapid decrease in the fraction
of time the system is in consensus when the network delay de-
creases. The authors further show that heterogeneity in mining
power leads to an amplified inequality in blocks contained
in the main chain, while improving the overall consensus
efficiency. The results are consistent with [12] who deployed
a synthetic Ethereum network with pre-defined, adjustable
network delays.

III. SELFISH MINING

If all miners behave honestly, then in expectation, a miner’s
share of total block revenue is equal to the miner’s share of
the network’s hashing power. This is considered to be the fair
share [13]. On the contrary, the main idea of selfish mining
is to make honest miners waste computational resources on
blocks that are not going to be part of the main chain [3].
A selfish miner may achieve this by keeping newly mined
blocks private, rather than broadcasting them immediately.
This effectively causes a chain split, although honest miners
do not know about it initially. Honest miners continue to mine
on the public chain, whereas the selfish miner mines on their
private chain. The selfish miner only broadcasts their private
blocks as honest miners catch up to the private chain’s height,
with the intention to invalidate honest blocks. More likely,
however, is that a selfish miner is not operating alone, but
is part of a selfish mining pool. Generally, a pool is a set
of miners that cooperate, in order to smooth their returns
over time. A mining pool pools computational resources of all
members. The block rewards are shared between all mining
pool members, proportional to their hashing power within the
pool [14]. If a selfish miner operates within a selfish mining
pool, private blocks are shared with all pool members, in order
to extend the pool’s private branch. For the following examples
we will, without loss of generality, assume a single selfish
miner.

We use [1]’s definition of α as the selfish miner’s (or selfish
pool) share of the network’s total hashing power. To illustrate
selfish mining, consider block tree (b) of Fig. 1, in which
a selfish miner, say Alice, controls 40% of the network’s
hashing power (α = 0.2) and the honest miners collectively

control 80% ((1−α) = 0.8). With blocks 9 and 10, Alice has
managed to build up a lead of two blocks over the public chain.
Now Bob, an honest miner, finds block 11 and immediately
publishes it. Upon receival of block 11, Alice will publish her
privately kept blocks (9 and 10), making it the longest chain
and thus the main chain. Once Bob receives block 10, he will
acknowledge the longer chain as the main chain. Hence, Bob’s
block 11 ends up being an orphan. Alice made Bob waste
resources on a block that was never going to end up in the
main chain. This is the mechanism by which selfish mining
may increase a selfish miner’s fair share of block rewards.

This potential advantage of selfish mining comes at the
risk of losing block revenue for not publishing the block
immediately. Consider scenario (a) in Fig. 1, in which a selfish
miner, say Alice, controls 20% of the network’s hashing power
(α = 0.4) and the honest miners collectively control 60%
((1 − α) = 0.6). Alice mines block 3 on top of block 2,
but does not publish it in an attempt to further increase her
advantage. Thus, Bob does not know about block 3 so he
continues to mine on top of block 2. Bob mines the next
block, which he immediately broadcasts to the network. Upon
the receival of Bob’s newly mined block 4, Alice will publish
her privately kept block 3 in an attempt to avoid losing the
block reward. At this point, it is a race between Bob’s block
and Alice’s block. The next block that is mined decides,
whether block 3 or block 4 will be part of the main chain.
Another honest miner, say Charlie, mines the next block on
top of block 4. Consequently, Alice lost the race and wasted
her computational resources on a block that without acting
selfishly would have, with almost certainty, been part of the
main chain.

Note that the fair share of revenue for the selfish miner in
scenario (a) would have been 0.2, but the realized selfish share
of revenue was 0. This is due to the failed selfish mining attack.
In scenario (b), in which two successful selfish mining attacks
took place, the fair revenue share would have been 0.4, but the
realized share of revenue for the selfish miner was 0.5. These
two scenarios illustrate that selfish mining may not always be
a profitable strategy [8]. The main determinant for profitability
is the selfish miner’s share of the network’s hashing power.

In order to investigate whether selfish mining is a prof-
itable strategy when considering network latency, we introduce
an agent-based model to simulate the miner’s behavior and
blockchain dynamics in the next section IV.

IV. MODELLING APPROACH

In the first part of section IV-A, we briefly discuss our
agent-based model (ABM) in general. Afterwards, we define
an algorithm that follows the logic of the selfish mining
specification. Finally, we introduce a metric to capture the
efficiency of the selfish mining strategy.

A. ABM of Selfish Mining

1) Peer-to-peer network: The foundation of the agent-based
model (ABM) is a set N of N nodes interconnected through
a static graph G(N , E) representing the system’s peer-to-peer
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Fig. 1: Visualisation of block trees for different selfish shares of the network’s hashing power (α)

network, which we will henceforth refer to as Bitcoin. Nodes
connect are endowed with computational power which they de-
vote to solve the Proof-of-Work problem. If this computational
power is zero, the nodes only participate of the consensus
but cannot create blocks; all others work to mine new blocks.
Without loss of generality, we call all nodes miners. A miner
can be of either honest or selfish type. The former will follow
the standard Bitcoin protocol, the latter will perform the selfish
mining strategy. For sake of simplicity, in the simulations, we
assume a single selfish miner, which implies that (N − 1)
miners are honest.

Miners are connected, so that they can communicate with
one another. For the simulations we assume an average degree
of 10. The Bitcoin protocol specifies a default connection size
of eight peers for a new node joining the network. But the
average number of connections is effectively higher than the
default value, because a node may be open to new incoming
connections, meaning that over time the number of peers of a
node tends to increase [15]. To account for heterogeneity in the
degree distribution, we consider different network topologies
in the simulations (uniform random, Erdos-Rényi, Barabási-
Albert).

Further, we make the simplifying assumption of a static
topology, meaning that miners do not enter or exit the
network. The assumption also implies that miners do not
drop or form any new connections with their peers. For
selfish mining the defining time scale is that of emerging
consensus (block creation and propagation), which should
be considerably lower than that of nodes altering their
connections, or entering and exiting the network altogether.
We therefore believe this is a reasonable assumption to make.

2) Mining: Each miner is assigned some computational

power share, ci, such that
N∑
i=1

ci = 1. Further, we assume

that the selfish mining pool controls a share of α of the
network’s total computational power. Thus, honest miners
control (1 − α) of the network’s hashing power. Bitcoin’s
hashing power distribution is very heavy-tailed. A single entity
controlled as much as 21% of Bitcoin’s total mining power
[16]. To reflect this heterogeneity of computational resources
across miners, we consider various hashing power distributions
in the simulations (uniform random, power-law, exponential).

Blocks are mined continuously and independently at a

constant average rate. Thus, the proof-of-work algorithm that
determines block creation is a Poisson process. Therefore, time
between events – here events are new blocks – follows the
exponential distribution. In Bitcoin, the average inter-block
time is defined as 10 minutes, which we denote as τb = 10′.
Given that we assume a static topology, if there is selfish
mining activity in the network, blocks are expected to be
mined at a slower rate, because relatively more hashing power
is wasted on orphaned blocks. However, we assume no such
difficulty adjustment. Again, we justify this simplification with
the fact that the defining time scale for selfish mining is much
lower. But indeed, this may be accounted for in future research.

The probability that miner i finds a new block in a given
small time interval dt is

pmi (t) ≈ ηidt = ci (1)

Note that since computational power is normalized, ci is
equal to miner i’s share of the network’s total computational
power, meaning that the probability of mining a new
block is proportional to the miner’s share of the network’s
computational power. Equation 1 implies that miner i’s time
to find a new block follows the exponential distribution with

parameter ηi. Further, it follows that
N∑
i=1

ηi = 1/τb. Given that

the block creation process is a Poisson process, the number of
blocks in a given interval follow a Poisson distribution with
parameter ηi. Hence, the number of blocks mined by all miners
also follows a Poisson distribution, but with parameters

∑
i ηi.

3) Blockchain dynamics: In our model, the atomic unit
of information propagated through the network is a block b,
which is mined by a miner mb. Transactions are not considered
specifically, as we are only interested in the process of block
creation, namely mining. As introduced in [17], each block
is of a certain height hb (number of blocks directly chained
together between block b and the genesis block). Further, each
miner has at any point in time t a local copy of the blockchain
Bi(t). At time t, the height of miner i’s local copy of a
blockchain is defined as

Hi(t) = max
b∈Bi(t)

(hb) (2)

Importantly, a miner deems the blockchain valid that has
cumulatively spent most proof-of-work, which in the ABM

2021 Third International Conference on Blockchain Computing and Applications (BCCA)

113

Authorized licensed use limited to: University of Fribourg - Bibliothèque cantonale et universitaire. Downloaded on December 12,2022 at 15:07:40 UTC from IEEE Xplore.  Restrictions apply. 



always corresponds to the longest chain.

4) Network delay: For the sake of simplicity, it is assumed
that block propagation process is also a Poisson process with
parameter λ−1nd , the same average value for all edges in the
peer-to-peer network. Thus, the average time for a block to
be propagated from node i to one of her peers is distributed
exponentially, namely ∼ exp(−λnd). Indeed, we assume
that the communication between selfish and honest nodes
and within the selfish pool follows the same distribution. In
reality, it is more likely that selfish pool members use more
efficient means of communication. For example, rather than
propagating entire blocks they could send only so-called
block headers to decrease latency. As a consequence, the
results for the profitability threshold level of selfish miners
will tend to represent an upper-bound. Future research could
consider to differentiate block propagation speeds between
pool members and non-members.

5) Evolution: The ABM evolves over time as events occur.
There are two types of events that can occur: Either a new
block is mined by some node or a block is propagated by
some node to some other node. Event times are computed
very efficiently with the Gillespie algorithm [18]. ”It [...]
numerically simulates the time evolution of the given [...]
system. [...] This algorithm never approximates infinitesimal
time increments dt by finite time steps ∆t” [19].

Each node i independently mines a new block at a Poisson
rate ηi. Thus, at the global level new blocks are created at a rate∑

i ηi. Blocks, on the other hand, are propagated from node i
to her peers at a rate λnd. Importantly, blocks are only propa-
gated according to rules specified in subsubsection IV-A3. The
ABM keeps track of all nodes that are broadcasting in any
given state of the model, as well as all peers to which each
node is broadcasting to. The latter we define as the number of
active links Nal, again following [11]’s notation. It follows that
the rate of block propagation between two nodes connected by
an active link occurs at an aggregate rate of Nalλnd.

Having defined the rates of all event types, it follows that
the rate at which any of these events occurs is defined as ξ =∑

i ηi+Nalλnd. Effectively, the Gillespie algorithm computes
a waiting time such that the event occurrences in the system
follow the distributions outlined in subsubsection IV-A2 and
subsubsection IV-A3. To compute the waiting for the next
event, the next event is selected with probability proportional
to its rate of occurrence in the system. Thus,

Nalλnd∑
i ηi +Nalλnd

(3)

is the probability that the next event is a broadcasting event.
If the next event is a broadcasting event, then the probability
with which a specific active link is executed is random, since
we assume λnd to be equal for all active links.

Similarly, ∑
i ηi∑

i ηi +Nalλnd
(4)

is the probability that the next event is a mining event. If
the next event is a mining event, then the probability with
which a specific node is randomly picked (to be the miner)
is proportional to ηi/

∑
j ηj , which in turn is proportional to

node i’s share of the network’s hashing power.
After any event, time within the model is updated from t

to (t+ t′) with t′ ∼ exp(ξ).

B. Types of miners

a) Honest miner: Consider honest miner i and any other
miner j (selfish or honest). If miner j at time t broadcasts
block b to miner i, miner i will only accept block b and add
it to her local copy of the blockchain if i’s height of the local
copy of the blockchain is less than the height of the block just
received by miner j, namely if Hi(t) < hb. If this block b
is accepted, miner i also accepts all preceding blocks (only
relevant if block b was mined on top of a different block
than miner i was mining on before). At time t miner j and i
effectively share the same blockchain copy. As a result Hi(t)
increases to match block b’s height hb. Similarly, if miner i
mined a block at time t (instead of receiving a new block),
this would also lead to an increase of Hi(t).

Importantly, honest miners naively share blocks that they
either just accepted or mined themselves with all of her peers
immediately.

b) Selfish miner: On the contrary, a selfish miner does
not necessarily share a block with honest miners immediately.
As a consequence, members of the selfish mining pool inten-
tionally create a chain split to mine on their private chain.
To decide when to broadcast which block, selfish miners keep
track of the difference in height between the public and private
chain, as well as the number of blocks they have attached to
the private chain. We define an algorithm that is executed by
selfish miners with the aid of pseudo-code. Note that algorithm
1 follows the logic of Eyal’s selfish mining specification in [1].

C. Relative selfish revenue

The fundamentally important property to determine whether
selfish mining is a more profitable strategy than honest mining
is relative selfish revenue. If it exceeds the fair share (block
rewards are proportional to hashing power), then selfish mining
is relatively more profitable. Let there be N miners, out of
which S nodes are selfish; Let miners 1, ..., S be selfish and
miners (S + 1), ..., N be honest. With wi denoting miner i’s
revenue, relative selfish revenue is defined as

Rselfish =

∑S
i=1 wi∑S

i=1 wi +
∑N

i=(S+1) wi

(5)

D. Miner Sequence Bootstrapping Index

We now test the method of [9], whose central idea is
to exploit the increased probability for selfish miners to
publish contiguous blocks. To validate this methodology, we
implement their Miner Sequence Bootstrapping model (MSB).
First, we count the number of times that in period T miner i
continuously discovers two blocks, CT

i . Next, we shuffle the
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Algorithm 1 Selfish-Mining

1: On INIT
2: current block ← genesis block . Block to mine on
3: current height ← 0 . Height of current block
4: public height ← 0 . Maximum height of public chain
5: private chain length ← 0 . Number of blocks

attached to private chain
6: mine on current block . Always mine on current

block
7:
8: On RECEIVE BLOCK(block)
9: ∆← (current height − public height)

10: if block mined by honest miner then
11: if height of block > public height then . New

honest block, update local view
12: public height ← height of block
13: if height of block > current height then .

Honest chain ahead, adopt it
14: current block ← block
15: current height ← height of block
16: broadcast block to all miners
17: private chain length ← 0
18: else if ∆ = 1 then . Lead was 1, publish

private block to start race
19: broadcast current block to honest miners
20: else if ∆ = 2 then . Lead was 2, publish

private chain
21: broadcast current block to honest miners
22: else if ∆ > 2 then . Lead was > 2, publish

matching private block
23: broadcast private block to match public

height
24: else
25: if height of block > current height then . New

selfish block, update local view
26: current block ← block
27: current height ← height of block
28: private chain length +1
29: if ∆ = 0 and private chain length = 2 then .

Was 1-1 race, publish new block
30: broadcast block to all miners
31: private chain length ← 0
32: else . Extend private chain length
33: broadcast block to selfish miners
34:
35: On MINE BLOCK(block)
36: ∆← (current height − public height)
37: current block ← block
38: current height ← height of block
39: private chain length +1
40: if ∆ = 0 and private chain length = 2 then . Was

1-1 race, publish newly found block
41: broadcast block to all miners
42: private chain length ← 0
43: else . Extend private chain length
44: broadcast block to selfish miners

chain repeatedly and again count the number of times that in
period T miner i continuously discovers two blocks, which we
call ST

i (t). Based on the shuffled simulation, we define 〈ST
i 〉

as as the expected number of times a miner i continuously
discovers two blocks in period T . Then, the MSB value for
miner i is defined as

MSBT
i =

CT
i − 〈ST

i 〉
σ[ST

i ]
, (6)

where σ[ST
i ] is the standard deviation of all observations

ST
i (t). This being a z-score, the MSB value is statistically

significant at the 95% level for ∀MSBi > 2. We then
compute an average MSB score for all selfish miners, MSB.

V. RESULTS

This section discusses the results of the simulations of the
ABM model introduced in section IV.

Note that we refer to high block latency, slow block prop-
agation times or slow block diffusion times synonymously.

A. Relative selfish revenue

Figure 2 shows the impact of of introducing latency to [1]’s
model of selfish mining. Note that λnd is the rate of block
propagation. A high rate of block propagation implies short
block diffusion times.

In Figure 2a, selfish mining is a more profitable strategy, if
the graphs are above their respective ”fair share” thresholds,
as indicated by the respectively colored, dotted lines. For
example, for α = 0.4, we can see that relative selfish revenue
never is below 0.4, meaning that selfish mining is more
profitable ∀λnd.

There are two important observations to be made. First, rel-
ative selfish revenue, as defined in subsection IV-C, is decreas-
ing as block propagation time decreases. Second, for higher
values of block latency (low λnd), selfish mining is always a
more profitable strategy than honest mining. The selfish miner
benefits relatively more from slow block diffusion, because
they are more likely to extend their chain than honest miners.
The reason is that the selfish miner does not suffer from slow
block diffusion time, since they do not need to broadcast it
in the first place (solo selfish miner). If it were a selfish
mining pool and latency was equal for communication with
pool members, the pool’s profitability would suffer similarly.
For faster in-pool communication, high latency again makes
selfish mining relatively more profitable. Notably, for higher
values of α selfish mining is more ”resistant” against fast block
diffusion. This is intuitive, as selfish mining becomes more
profitable with increasing mining power.

Figure 2b shows for some values of λnd the relationship
between the selfish miner’s share of the network’s hashing
power, α, and relative selfish revenue, Rselfish. The values of
λnd have been chosen to expose the dynamics of different
latency regimes. We use these values for most following
results. Importantly, the figure confirms some above findings,
namely that Rselfish is increasing in α. The faster block
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(a) (b)

Fig. 2: Relative selfish revenue as a function of latency (λnd) and selfish hashing power (α)

diffusion is, the more mining power is required to surpass the
fair share threshold for reasons stated above. Noteworthy is the
fact that our model can confirm [1]’s main finding: Irrespective
of how many block races selfish miners win, selfish mining
is always relatively more profitable for mining power levels
exceeding one third of the network’ total mining power. In
terms of latency, this means that no matter how high the
block propagation rate is – and therefore unfavorable to selfish
miners (see graph of λnd = 79.43) – selfish mining is always
relatively more profitable for ∀α ' 1

3 .

B. Hashing power distributions

We are interested in learning the effect of varying hashing
power distributions on relative selfish revenue, in order to un-
derstand the robustness of the selfish mining strategy. Figure 3
shows relative selfish revenue as a function of selfish mining
power for different hashing power distributions, namely a
uniform random, power law, and exponential distribution. We
show results for two latency regimes.

We observe that hashing power following an exponential
distribution has negligible effect on the dynamics of the
system, for either latency regime. The dynamics are indis-
tinguishable to the previous results with a uniform random
distribution. However, the left column of Figure 3 shows
remarkable differences for hashing power following a power
law distribution with very high block latency (low λnd). First,
relative selfish revenue crosses the fair-share-threshold only
for higher values of α. Second, the slope of the regression
of relative selfish revenue on selfish mining power is notably
less steep. The reason for this is as follows: Hashing power
following a power law distribution implies that it is relatively
more likely that an honest miner has a very large share of
the network’s hashing power. This in turn implies that when
block diffusion is very slow, it is more likely that an honest
node manages to outperform the selfish miner, thus creating
the longest chain. For latency this high, the main chain is
effectively built by one single miner, because block diffusion
time exceeds the expected time between new blocks. However,
[16] finds that Bitcoin mining power trends can be fit as
exponential distributions.

C. Topologies

Next, we consider the effect of varying topologies on
relative selfish revenue. Figure 3 shows relative selfish revenue
as a function of selfish mining power for uniform random,
Erdos-Renyi and Barabasi-Albert topologies. Again, we show
results for two latency regimes. It is apparent that the dynamics
of the system are very robust to changes in topology for both
latency regimes.

Overall, we can consolidate that the dynamics of the system
are very robust to changes in the underlying topology or
hashing power distribution. The exception being powerful
honest nodes in environments where block diffusion is very
slow. This is more likely to exist in systems where hashing
power is following a power law distribution. This is a relatively
unfavorable environment for selfish mining.

D. MSB Index

To validate the Miner sequence bootstrapping model (MSB)
as proposed by [9] consider Figure 4.

Figure 4a shows that for all latencies selfish mining is
detectable with the MSB methodology. Notably, it does not
depend on selfish mining being a relatively more profitable
strategy. This is due to the fact that selfish miners will,
regardless of operating below the fair-share threshold, have
an increased probability of publishing two blocks in a row.
Interestingly, the behavior is relatively robust to changes in
selfish mining power. Trivially, for α = 0 there are no selfish
blocks and thus MSB = 0.

Figure 4b confirms the findings above. However, for λnd =
0.03, after some inflection point, the MSB value is decreasing
in α. This is surprising. But note that these dynamics occur
in a latency regime that can be considered extreme (implied
block delay time of more than 30 minutes).

E. Limitations

In our ABM, we can assign each block to a specific miner,
such that [9]’s assumption of miners having only one identity
in the network is fulfilled. We are not modelling the fact that
miners may choose to hide selfish mining behavior through a
Sybil ”attack”. Further, our results show that their approach
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(c) (d)

(e) (f)

Fig. 3: Relative selfish revenue as a function of selfish hashing power (α) for different topologies and different hash power
distribution

(a) (b)

Fig. 4: MSB value as a function of latency (λnd) and selfish hashing power (α)
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produces results as expected, namely that selfish mining causes
statistically significant levels of consecutive mined blocks. As
much as a model can validate a methodology, our results
confirm the work in [9].

Some of our simulations were limited by the relatively small
network size, which may cause a lack of heterogeneity in the
network [12]. We encourage to re-investigate some emerging
properties for larger underlying networks.

VI. CONCLUSION

This paper mainly analyzed the effect of block propagation
delays, network topology and mining power distribution on
relative selfish revenue.We introduced an agent-based model
that simulates the selfish mining strategy in a Bitcoin setting.
The modeling of a peer-to-peer network structure allows us to
extensively study the effects of latency. Our research suggests
that selfish mining is a viable and profitable strategy. Future
research may focus on tuning underlying model parameters
based on empiric network size, topology and hashing power
distribution.

Assuming a single selfish miner, we show that relative
selfish revenue is a decreasing function of block propagation
speed. Further, we find that for high levels of latency selfish
mining is always a relatively more profitable strategy. In
particular, we confirm [1]’s main observation that selfish
mining is always relatively more profitable for α > 1/3.
Furthermore, we show that the dynamics of the selfish mining
are very robust to changes in the underlying network topology.
However, we find that a hashing power distribution following
a power law greatly affects relative selfish revenue. In other
words, powerful honest nodes can make it harder for selfish
miners to be relatively more profitable. Finally, using Miner
Sequence Bootstrapping (MSB) index [9], we confirm selfish
mining behavior also causes statistically significant levels of
consecutive mined blocks.

The composability of our ABM has the advantage of
allowing modifications of the behavior of agents easily. Future
research should particularly analyze the effects of selfish min-
ing pools. Further, a variation in block propagation times for
communication within the selfish mining pool is an important
dynamic to analyze.

Our paper shows that a combination of game theoretic
analysis paired with agent-based modelling can help to ad-
vance the field giving insights into what effects strategic
behavior has on the global properties of the system. Agent-
based modeling proves to be a valuable methodology, where
analytical derivations or direct implementation in large-scale
distributed networks fail to be viable. ABMs allow us to to
bridge the gap between theory and empirical complex systems.
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