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Abstract. This paper contains an extended version of the description
of the FDMM formalism presented at ICEIS’2012. FDMM is a formal-
ism to describe how meta models and models are defined in the ADOxx
approach as used in the Open Models Initiative. It is based on set the-
ory and first order logic statements. In this way, an exact description
of ADOxx meta models and correponding models can be provided. In
the paper at hand we extend the description of the formalism by illus-
trating how the mathematical statements can be used to support the
implementation on the ADOxx platform. For this purpose we show how
the FDMM constructs are mapped to statements in the ADOxx Library
Language (ALL). As an example of the approach, the formalism and the
mapping to ALL are applied to a modeling language from the area of
risk management.
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1 Introduction

Conceptual models are today used in many areas of enterprise information sys-
tems [1, 2, 3]. Examples range from fields such as strategic management, business
process and workflow management to enterprise architecture and software en-
gineering. For these purposes a large variety of modeling languages have been
developed and successfully applied in academia and industry [4]. When it comes
to the sharing of such modeling languages and their corresponding models - as
it has been recently promoted by the Open Models Intiative [5, 6] - the exact
description of a modeling language and the models is one of the most important
tasks. These descriptions not only reflect the design choices made during the
implementation of the language. They also permit to compare and learn from
different implementations of a modeling language and support the interpretation
of the models [7].
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In order to describe the building blocks of modeling languages it can be
reverted to several types of meta modeling approaches [8]. These approaches
provide the constructs necessary for describing the abstract and concrete syn-
tax of a modeling language [9, 10]. In this way they also define constraints and
correctness criteria for creating valid models based on the definition of a mod-
eling language. In the context of the Open Models Initiative, several projects1

have reverted to the freely available and industry proven ADOxx2 meta mod-
eling approach. At its core, the ADOxx approach allows to specify the syntax
of a modeling language together with its graphical representation. From these
specifications, visual model editors are then created automatically [11].

For the description of ADOxx based modeling languages, it has so far either
been reverted to natural language descriptions, e.g. [12, 13], concrete imple-
mentations in the form of source code, e.g. [14, 15] or visual representations,
e.g. [16, 17]. A formal description of the ADOxx meta modeling approach is so
far not available. This is however necessary to analyze and evaluate how the
syntax of a certain modeling language has been realized, compare ADOxx meta
models and models to other meta modeling approaches such as GME, Ecore or
ARIS cf. [8], derive suggestions for its enhancement and finally describe seman-
tics for its further processing [18, 9].

Therefore we propose the FDMM3 formalism that is capable of describing
the core constitutents of the ADOxx approach. FDMM aims to provide an easy
to use formalism that does not require specialized mathematical knowledge and
that is capable of expressing the implementation of ADOxx meta models and
models. The paper is structured as follows: In section 2 we will briefly discuss the
foundations of modeling languages, meta models and models, the characteristics
of the ADOxx approach and describe a running example for a modeling language
from the area of enterprise information systems. Section 3 will describe the for-
malism including the necessary constraints and correctness criteria. In section 4
the formalism will be applied to the sample modeling language. In section 5 it
will be shown how the formalism can be used as a basis for the implementation
of the meta models in ADOxx using the ADOxx Library Language (ALL). The
results of this implementation are then discussed in section 6. Work related to
the approach will be part of section 7. The paper is concluded by an outlook on
the future work in section 8.

2 Foundations

In this section we will briefly define the terms modeling language, meta model
and model and describe the main characteristics of the ADOxx meta model-
ing approach. Finally, we will present a running example by using a modeling
language from the area of risk management.

1 See http://www.openmodels.at/web/omi/omp
2 ADOxx is a registered trademark of BOC AG.
3 The acronym FDMM stems from: A Formalism for Describing ADOxx Meta Models

and Models



Formalizing Meta Models with FDMM 3

2.1 Modeling Language, Meta Model and Model

According to a framework proposed by [10], a modeling language is composed
of a syntax, semantics and notation. The syntax specifies the elements and at-
tributes of the language and the semantics assigns meaning to these constructs.
In contrast to other frameworks, the notation is treated separately and is used
to specify the visual representation of the language. The syntax further consists
of an abstract syntax, which is represented by the meta model, and the concrete
syntax, which is represented by a model [19, 9, 20]. The meta model can itself be
described by a modeling language, i.e. the meta modeling language. Accordingly,
the abstract syntax of the meta modeling language is represented by a meta
meta model and the concrete syntax is represented by a meta model [8].

An example for these relationships is shown in figure 1: in the meta meta
model the two entities element and attribute are defined. Additionally, a relation
between the two entities is shown. On the meta model level the E1 entity is
defined as an element and the A1 and A2 entities as attributes that can be
related to E1. Finally, on the model level the entities ε1 and ε2 are defined as
E1 elements, the α1 and α2 entities as A1 attributes and the β1 and β2 entities
as A2 attributes. The meta meta model thus defines which entities are provided
for the specification of the abstract syntax of a modeling language in the form of
a meta model. If the specification of the meta meta model is generic enough it
can be used to specify a multitude of different modeling languages. A typical use
case is then to automatically create model editors based on the static meta meta
model specification and the dynamically adaptable meta model specifications.

Element Attribute

E1

A1
A2

ε2

α1α2 β1

β2

ε1Model

Meta 
Model

Meta 
Meta 
Model

is-a
attached-to

Fig. 1. Example for a Meta Meta Model, a Meta Model and a Model

In addition to association mechanisms for defining linkages between entities,
meta meta models typically also provide inheritance and containment mecha-
nisms [20]. By inheritance mechanisms, generalization and specialization rela-
tionships between entities of a meta model can be expressed to provide means
for effecting polymorphic behaviors at model execution or interpretation time.
This is required in particular for the design of algorithms that shall work on mul-
tiple, similar modeling languages without the need of particular adaptations: by
defining an algorithm on a set of general entities that are shared by different
meta models, the algorithm can be later bound automatically to entities that



4 Fill et al.

are inherited from these general entities. Containment mechanisms refer to the
inclusion of a set of entities into another entity on the model level. This is typi-
cally used to specify model/diagram types or aggregations/nestings that group
sets of entities.

2.2 The ADOxx Meta Modeling Approach

The ADOxx meta modeling approach has originally been conceived in the course
of the development of the ADONIS business process management toolkit in
1995. Since then it has been successfully used in a large number of academic
and commercial projects by more than 1000 customers worldwide [21, 22]. The
basic building blocks of its meta meta model are classes and relationclasses that
are complemented with attributes [22]. Classes are organized in the form of an
inheritance hierarchy so that the attributes of a super-class are inherited by its
sub-classes in the sense of standard object orientation principles. Relationclasses
are defined by their from-class and to-class attributes to specify valid instances of
source and target classes. These relations can be complemented with cardinality
constraints to limit the number of participating instances.

For collections of classes and relationclasses a containment mechanism in
the form of model types is available. Model types define the context for the
instantiation of classes and relationclasses in the form of models. Therefore,
when creating a model, at first a model type has to be selected to specify which
classes and relationclasses are valid in a model. Subsequently, these classes and
relationclasses are instantiated as part of the model.

Besides the standard data types such as integer, string, and double, enumer-
ation attributes are available in ADOxx that contain pre-defined values that
can only be selected but not modified by a user during modeling. Furthermore,
attributes can also be of two special types: attributes of the type expression
contain strings in a proprietary expression grammar for automatically calculat-
ing the value of an attribute. Attributes of the type interref allow linking the
instance of a class to another class instance of the same or of a different model
instance or linking it to the same or a different model instance itself. The graph-
ical representation of the instances of classes and relationclasses is specified via
the particular string attribute named GRAPHREP. This attribute permits to
specify context-dependent graphical representations for the classes and relation-
classes, again based on a proprietary grammar - cf. [23]. Although an inherent
part of the ADOxx approach, the graphical representation can thus be modified
independently from the other entities.

With these characteristics, the following requirements were defined for a for-
malism that can describe the concepts of the ADOxx meta modeling approach:
It should permit a formal description of the approach that is easy to handle and
thus suitable for a wide range of users. Therefore, the formalism should focus on
the core constituents to enable the description of arbitrary modeling languages
that have been implemented using the ADOxx approach. It should however be
extensible to allow its further development and future refinement.
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2.3 Running Example: The 4R Modeling Language

As a running example we will revert to an existing modeling language in enter-
prise information systems from the area of governance, risk, and compliance
(GRC). This example will first illustrate how meta models and models are
typically used in information systems to create domain conceptualizations. In
section 4 we will revert to it again for showing the application of the FDMM
formalism.

In the last years particular consideration has been given to the management of
risks and regulatory compliance together with their effects on returns and corre-
sponding reporting requirements of enterprises. In line with these developments,
the framework for integrated enterprise balancing has been derived [24, 13, 25].
The goal of this framework is to govern business activities with organization-
wide consistent return and risk indicators. As a foundation, it is necessary to
provide a common data basis that represents information from the areas of r isk,
return, regulation, and reporting - the so-called 4R information architecture.
For acquiring this information, the 4R modeling language [13] and the 4R situ-
ational method for implementing such solutions in an organization were devel-
oped [25]. In its original form, the central parts of the 4R modeling language
were illustrated by an extension of a graph based formalism. The corresponding
realization using the ADOxx meta modeling approach was however described in
natural language.

The meta model of the 4R modeling language, as it was specified in ADOxx,
contains the following model types [13]: the 4R portfolio model, the 4R business
process model, and the 4R organizational model. Briefly summarized, the port-
folio model type is used to describe multi-dimensional aggregations of the risks,
returns and correlations of business transactions in regard to their relations to
products and customers [24]. The single business transactions in this model can
be linked to instances of the 4R business process model type. This second model
type extends the process modeling language of business graphs [26] with ele-
ments, relations, and attributes for representing events, aggregations of events
and their influence on the properties of process activties. The meta model is
complemented with a 4R organizational model for representing actors, organi-
zational units, resources, and roles that fulfill tasks in a business process.

For the implementation of the 4R model types on ADOxx the following
classes and relationclasses together with several attributes were specified to rep-
resent the risk and return figures of business transactions and the underlying
risk-affected business processes:

– for the portfolio model type the class business transaction and the relationclass
relates business transaction,

– for the 4R business process model the super class FlowObject and as sub classes
of this class: Start, Decision, SubProcess, Activity, Parallelity, Join, and End.
Additionally the classes: 4R risk aggregation, and 4R event ; the relationclasses:
subsequent, 4R aggregation relation, and 4R influences relation
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– for the 4R organizational model the classes: actor, organizational unit, re-
source, and role; and the relationclasses: uses resouce, belongs to unit, has
role, and has resource

W:

RE: RI:
WE:
RE:
RI:

BP Model

Business Transaction
[Aggregated view]

W: value; RE: return; RI: risk

Business Transaction
[Single view]

WE: value; RE: return; RI: risk

Relates business 
transaction
ρ: correlation 

between business 
transactions

ρ:

Start Decision Activity

Parallelity Join End
4R risk 

aggregation

4R event

subsequent

4R influences 
relation

ʌ

4R aggregation relation

ε: probability of occurrence; 
I: estimated impact

ε=  I=

Fig. 2. Symbols of the 4R Portfolio Model Type and the 4R Business Process Model
Type

To apply the FDMM formalism we will later regard the 4R portfolio model
and the 4R business process model type in more detail. The classes and rela-
tionclasses of these model types are represented by the sets of symbols as shown
in figure 2.

3 The FDMM Formalism

As stated in the introduction, the goal of this paper is to develop a formalism that
is capable of describing the core constituents of ADOxx meta models and models
as well as the criteria for valid models based on the meta model definitions.
FDMM is therefore not a formalization of all aspects of the ADOxx approach,
but a formalism that aims to support users of ADOxx to describe their meta
models and models in a formal way. For the development of the formalism we
reverted both to literature sources on the ADOxx meta modeling approach as
well as existing implementations [2, 23, 11]. During the development we aimed
for keeping the formalism as simple as possible while not sacrificing any of the
core concepts of the approach.

3.1 Definition of Meta Models

At first we define the basic constituents of meta models MM which can then be
used to derive model instances mt. We define a meta-model to be a tuple of the
form

MM =
〈
MT,�,domain, range, card

〉
(1)

where
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– MT is the set of model types. We have

MT = {MT1,MT2, . . . ,MTm} (2)

where MTi in turn is a tuple,

MTi =
〈
OT

i ,D
T
i ,Ai

〉
(3)

consisting of the set of object types OT
i , a set of data types DT

i , and a set
of attributes Ai. In this way ADOxx classes and relationclasses are uniformly
represented as object types. As will be described below we will use the at-
tributes Ai also for expressing associations between object types. When we
describe the instantiation of the meta model in section 3.2 in model instances,
the attributes will map the instantiation of object types to the instantiation
of either object types or data types. This permits us to represent the ADOxx
concepts of relationclasses and interref relations in the same way. However,
this also means that, if for example directed relations are required, the no-
tions of source and target object types have to be added when specifying a
particular meta model. The object types, data types, and attributes are part
of their respective total sets:

OT =
⋃
j

OT
j ,D

T =
⋃

DT
i ,A =

⋃
Ai (4)

– � is an ordering on the set of object types, OT . If ot1 � ot2 we say that the
object type ot1 is a subtype of the object type ot2. Thereby the inheritance
hierarchy of ADOxx classes can be expressed. Due to the generic definition,
this ordering can also be used for relationclasses: as ADOxx requires a from-
class and a to-class attribute for relationclasses, a generic object type with
these attributes can be defined and used for the definition of subtypes that
inherit these attributes.

– the domain function maps attributes to the power set of all object types, i.e.

domain : A→P(
⋃
j

OT
j ) (5)

The domain function will constrain what objects an attribute can map in
the model instances. It is therefore used to attach attributes to a particular
set of object types. In regard to ADOxx this corresponds to the assignment
of ADOxx attributes to classes and relationclasses and the definition of an
endpoint of an ADOxx relationclass.

– The range function maps an attribute to the power set of all pairs of object
types and model types, all data types, and all model types

range : A→ P

⋃
j

(OT
j × {MTj}) ∪DT ∪MT

 (6)
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In the model instances, the range function will constrain what values an at-
tribute can take. For the definition of a meta model it is thus used to specify
the type of an attribute. I.e. whether the attribute has the function of specify-
ing the relation of an instance of an object type in a model instance to either:
a. the instances of object types in a particular model type, b. instances of data
types or c. instances of model types. Case a. thus corresponds to both the re-
lationclass and interref concepts in ADOxx that have an instance of a class as
a target, case b. to the ADOxx attribute concepts except interref attributes,
and case c. to the ADOxx interref attribute concept that has an instance of a
model type as a target.

– The card function maps pairs of object types and attributes to pairs of integers

card : OT ×A→ P(N× (N ∪ {∞})) (7)

where N is the set of non-negative integers. In the model instances the card
function will constrain how many attribute values a object can have. In regard
to the different types of attributes this thus permits to specify how many
instances of object types, of data types or of model types an attribute can
contain. When comparing this to the ADOxx approach, the card function
determines whether the value of an attribute corresponds to either: a. a target
of a relationclass - that can only be one distinct class, b. the target of an interref
attribute that can have multiple values or c. the instance of a datatype that
can also have multiple values, which corresponds to the enumeration attribute
type in ADOxx.

In addition we define the following correctness criteria for meta models: The
sets of object types, data types, and attributes have to be pairwise disjoint

OT ∩DT = ∅, OT ∩A = ∅, DT ∩A = ∅ (8)

This follows from the fact that in mathematical terms we have so far only been
defining various sets that could overlap. In addition, for any attribute a that is
part of the attribute set Ai of the i-th model type - see equation 3, the domain
function for that attribute must point to any of the object types in that model
type

a ∈ Ai ⇒domain(a) ⊆ OT
i (9)

That ensures that attributes that are related by the domain function to a certain
object type are part of the same model type definition. This corresponds directly
to the ADOxx approach in the way that all concepts that are relevant for the
definition of models are grouped within the context of a model type.

3.2 Instantiation of Meta Models

We will now describe the instantiation of a meta model. The instantiation of a
meta model essentially describes the mapping of the model types, object types,
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and data types to model instances, objects, and data values together with a set
of triples. Thus, an instantiation of a metamodel MM will be a tuple〈

µmt, µO, µD, T , β
〉

(10)

where

– µmt is a one-to one mapping from model types to the power set of model
instances:

µmt : MT→ P(mt) (11)

Thereby it is defined that a model instance must be of one specific model type
and that there may be several instances of one model type.

– µO is a function taking the object types in a given model type to collections
of objects:

µO :
⋃
j

(
OT

j × {MTj}
)
→ P(O) (12)

where
O =

⋃
j

µO(OT
j × {MTj}

)
(13)

Thereby, the objects are defined as instances of an object type OT
j that is

part of a particular model type MTj - see also equation 3. The addition of
the model type is necessary as object types may be part of multiple model
types and in the ADOxx approach objects can only occur within a model
instance.
Sometimes it is convenient to create an object type which is meant to be
subtyped but which is not meant to be directly instantiated. The purpose of
such a type is to capture information that is common to all the subtypes. Such
a type is called an abstract type and we can define what it means to be an
abstract type based on the definitions above. An object type ot ∈ OT is said
to be abstract if for all model types MTi which contain the object type ot

(ot ∈ OT
i ) we have

µO(ot,MTi) =
⋃

ot1 6=ot,ot1�ot
µO(ot1,MTi). (14)

That is to say that all the objects that instantiate ot must instantiate ot

through one of its subtypes. In terms of ADOxx the notion of abstract types
corresponds to super classes of which one or more of their sub classes are
included in a model type but who cannot be instantiated themselves.

– µD maps data types to a power set of data objects

µD : DT → P(D) (15)

The data types are not further constrained. It is thus left to the user of the
formalism to ensure the correct content of a type, e.g. whether an ’integer’
type contains only integer numbers. The formalism will only ensure that a
data object is assigned a type that is valid in a particular context.
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– T ⊆ O×A× (D∪O∪mt) is a set of triples. These triples will later be used
to describe the contents of model instances.

– β : mt→ P(T ). This map describes how the triples are assigned to the model
instances.

We will additionally define a collection of correctness constraints on the in-
stantiation of the meta model. These constraints fall into two categories: dis-
jointness constraints that describe how a model instance is partitioned and do-
main/range/cardinality constraints that constrain how attributes can map ob-
jects to other objects and data values.

The following constraints define the disjointness and partitioning constraints
that must be enforced for the various parts of the meta model instantiation:

– The instances of object types and the instances of datatypes must be disjoint,
i.e. instances of object types and instances of datatypes cannot be the same.

µO(ot,MTj) ∩ µD(dt) = ∅ (16)

– The instances of two object types are disjoint if either the object types are
disjoint or if their model types to which they belong are disjoint, i.e. the
formalism does not permit the instantiation from multiple object types nor a
’reuse’ of objects of the same object type for different model instances:

i 6= j ∨ ot1 6= ot2 ⇒ µO(ot1,MTi) ∩ µO(ot2,MTj) = ∅ (17)

– For two different model types MTi and MTj also the corresponding model
instances must be disjoint, i.e. also for model instances no instantiations from
multiple model types are allowed:

MTi 6= MTj ⇒ µmt(MTi) ∩ µmt(MTj) = ∅ (18)

– Every element of the set of model instances mt has to be derived from a model
type, i.e. there cannot be model instances without a corresponding model type:

mt =
⋃
µmt(MTj) (19)

– For two different data types it must follow that also their instances are disjoint,
i.e. also for data types it is not allowed that instances can be derived from
multiple types:

dt1 6= dt2 ⇒ µD(dt1) ∩ µD(dt2) = ∅ (20)

– T is the disjoint union of β(mti) where mti ∈ mt. More colloquially every
triple is contained in exactly one model instance.

The following constraints define the inheritance, domain, range and cardi-
nality constraints that the meta model instantiation must satisfy:
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– if the object type ot1 ∈ OT
j is a subtype of the object type ot2 ∈ OT

j (ot1 � ot2)
then we have

µO(ot1,MTj) ⊆ µO(ot2,MTj). (21)

– Sibling object types are disjoint. More specifically if ot1, o
t
2, o

t
3 ∈ OT

j are object
types such that

ot2 � ot1, ot3 � ot1, ot2 6� ot3, ot3 6� ot2 (22)

then
µO(ot2,MTj) ∩ µO(ot3,MTj) = ∅. (23)

– If the value y of a statement is an object, i.e. there is a mapping from an
object type to an object for a concrete model type MTj , then the pair of an
object type and a model type have to be part of the range definition in the
meta model:

(ot,MTj) ∈ range(a)

(x a y) ∈ T ∧ y ∈ O⇒ ∃ot,MTj , y ∈ µO(ot,MTj) (24)

The second equation further defines that if y points to an object, then there
must exist an object type ot and a model type MTj that are part of an µO

mapping for y.
– If the value y of a statement is a data object then there must exist a datatype

that is part of the range definition of the attribute in the meta model and
there must be a mapping between the data type and the data object:

(x a y) ∈ T ∧ y ∈ D⇒ ∃dt ∈ DT dt ∈ range(a) ∧ y ∈ µD(dt) (25)

– If the value y of a statement is a model instance mt, then a model type MTj

must be part of the range definition and the y value must correspond to the
mapping of that model type to the model instance:

(x a y) ∈ T ∧ y ∈mt⇒ ∃MTj ∈ range(a), y ∈ µmt(MTj) (26)

– For each statement the attribute a of that statement must be part of the same
model type from which the object x has been mapped:

(x a y) ∈ T ⇒ ∃j a ∈ Aj ∧ ∃ot ∈ domain(a), x ∈ µO(ot,MTj) (27)

– If the value y of a statement is a data object then the data type must be part
of the same model type as the attribute:

(x a y) ∈ T , a ∈ Ai, y ∈ D⇒ ∃dt ∈ DT
i , y ∈ µD(dt) (28)

– And for the cardinality constraints: if x ∈ µO(ot,MTj), a ∈ Ai where 〈m,n〉 =
card(ot, a) then m ≤ |{y : (x a y) ∈ T ∧ y ∈ (O ∪D ∪mt)}| ≤ n.
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4 Application of FDMM to the 4R Modeling Language

To illustrate the usage of the FDMM formalism we will show in the following how
the modeling language from the running example in section 2.3 and instances
of this modeling language can be formally described. We start by defining the
model types that will represent the 4R portfolio models and 4R business process
models by MTPO and MTBP :

MTPO =
〈
OT

PO,D
T
PO,APO

〉
,MTBP =

〈
OT

BP,D
T
BP,ABP

〉
(29)

Next, we detail the sets of object types OT
PO and OT

BP for expressing what
corresponds to the classes and relationclasses in ADOxx by:

OT
PO = {Business-transaction, relates-business-transaction}

OT
BP = {FlowObject, Start,Decision,Activity, Parallelity, Join,End,

4R-event, 4R-risk-aggregation, subsequent, aggregation

influences} (30)

Thereby, the object type FlowObject is defined as an abstract type that has
to be instantiated through one of its sub types. In addition the following subtype
relationships hold between the following object types:

Start � FlowObject,Decision � FlowObject, Activity � FlowObject,
Parallelity � FlowObject, Join � FlowObject, End � FlowObject (31)

The same is applied for detailing the sets of data types DT
PO and DT

BP .
Thereby, the Enumview and Enuminfluence types are used to represent the
ADOxx enumeration attribute types with pre-defined values:

DT
PO = {String, F loat,Enumview}

Enumview = {Aggregated, Single}
DT

BP = {String, F loat,Enuminfluence}
Enuminfluence = {Time-influence, Cost-influence,

Return-influence,Quality-influence} (32)

We continue by detailing the sets of attributes APO and ABP :

APO = {ID,W,RE,RI,WE, ρ, relates-from, relates-to, Process, V iew}
ABP = {Name, ε, I, T ime,Cost, Return,Quality, Influence-type,

subsequent-from, subsequent-to, aggregation-from,

aggregation-to, influences-from, influences-to} (33)

For attaching the attributes to the object types and defining their value range,
we add according domain and range definitions. This can be done for example
by attaching the Name attribute to the required object type and then defining
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its range to be of the data type String. By using the FlowObject abstract type
we can do this for all object types that are defined as its subtypes:

domain(Name) = {FlowObject, 4R-risk-aggregation, 4R-event}
range(Name) = {String} (34)

We then add the cardinality definitions for each of the object types and their
attributes as shown here exemplarily for the name attribute:

card(FlowObject,Name) = 〈1, 1〉 , card(4R-risk-aggregation,Name) = 〈1, 1〉 ,
card(4R-event,Name) = 〈1, 1〉 (35)

As it has been done for the attributes of the data type String we can similarly
define the domain, range, and cardinality functions for an attribute of the type
Float. As already mentioned above, the FDMM formalism does not further
specify the data types so that we would have for example:

domain(W ) = {Business-transaction} , range(W ) = {Float}
card(Business-transaction,W ) = 〈0, 1〉 (36)

In the same way, ADOxx attributes with pre-defined values can be represented
in FDMM as shown in the following by inserting the data type set Enumview

in the range definition to specify the type of view that is used for a business
transaction:

domain(V iew) = {Business-transaction} , range(V iew) = {Enumview}
card(Business-transaction, V iew) = 〈1, 1〉 (37)

To permit references from one object to another model instance, e.g. to reference
business transactions to corresponding 4R business process models, the following
domain and range definitions are needed:

domain(Process) = {Business-transaction} , range(Process) = {MTBP}
card(Business-transaction, Process) = 〈0, 1〉 (38)

Finally, we also give an example for defininig the equivalent of a relationclass
based on an object type that connects to two other object types via ”to” and
”from” attributes:

domain(influences-from) = {influences}
range(influences-from) = {4R-risk-aggregation}

card(influences, influences-from) = 〈1, 1〉
domain(influences-to) = {influences}

range(influences-to) = {Activity}
card(influences, influences-to) = 〈1, 1〉 (39)
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Also for such an object type, that corresponds to a relationclass, attributes can
be added in the same way as shown above:

domain(Influence-type) = {influences}
range(Influence-type) = {Enuminfluence}

card(influences, Influence-type) = 〈1, 1〉 (40)

When defining relationclasses that can be used to connect multiple classes, the
definition can be simplified by reverting to a supertype class as for example the
FlowObject class and the subsequent relationclass:

domain(subsequent-from) = {subsequent}
range(subsequent-from) = {FlowObject}

card(subsequent, subsequent-from) = 〈1, 1〉
domain(subsequent-to) = {subsequent}

range(subsequent-to) = {FlowObject}
card(subsequent, subsequent-to) = 〈1, 1〉 (41)

Based on these definitions for the model type we can describe the instanti-
ation of a concrete model. As an example we use two models that have been
described in [13] - see figures 3 and 4. They represent sample instances of a 4R
portfolio model type and a 4R business process model type that shows how 4R
events and 4R risk aggregations are used to represent the influence of risks on
the accomplishment of activities. We will use these models to describe some of
its contents by using the FDMM formalism.

W: 25,00

RE:
55,00

RI:
60,00

WE: 23,00
RE: 35,00
RI: 24,00

2_Sample_Process

ρ:0,400

WE: -2,50
RE: 10,00
RI: 25,00

4_Sample_Process

W: 25,00

RE:
45,00

RI:
40,00

ρ:1,00

P Q

2 4

ρ:0,500

ρ:0,600

Fig. 3. Excerpt of a 4R Portfolio
Model [13]
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Fig. 4. Excerpt of a 4R Business Process
Model [13]

First we instantiate concrete models for the model types MTPO and MTBP

based on a mapping from the meta model definition:
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µMT(MTPO) = {mtpo1} , µMT(MTBP ) = {mtbp1} (42)

Next, we instantiate objects based on mappings from the object types. We show
this exemplarily for some instances of the business transaction, activity, 4R event,
and 4R aggregation object types:

µO(Business-transaction,MTPO) = {BTP , BTQ}
µO(Activity,MTBP ) = {ActivityA, ActivityB}
µO(4R-event,MTBP ) = {Machine-failure,Delayed-supplies}

µO(4R-aggregation,MTBP ) = {Acquired-waiting-time} (43)

Similarly we can instantiate object types that can later act as relations such
as the influences type:

µO(influences,MTBP ) = {influences1, influences2} (44)

Subsequently, we also show the mappings of some data types to data objects in
order to later assign them as values for attributes:

µD(String) = {′ActivityA′, ′ActivityB′, ′DelayedSupplies′,
′Machinefailure′, Acquired-waiting-time}

µD(Float) = {25.00, 55.00, 60.00}
µD(Time-influence) = {′time-influence′} (45)

And finally we can define the relationships between the objects and the data
object by using the attributes in the form of triple statements, e.g. to express
the names of concrete objects and the values of attributes and defining relations:

(ActivityA Name ′ActivityA′) ∈ β(mtbp1), (BTP W 25.00) ∈ β(mtpo1),

(influences1 influences-from Acquired-waiting-time) ∈ β(mtbp1),

(influences1 influences-to ActivityB) ∈ β(mtbp1)
(46)

And for detailing the type of influence by specifying the attribute value that is
available based on a pre-defined data type:

(influences1 Influence-type ′time-influence′) ∈ β(mtbp1) (47)

5 FDMM for Implementations on the ADOxx Platform

The ADOxx meta modeling approach as it has been described in section 2.2 has
been implemented in the form of an industry-ready, client-server based software
platform. One core functionality of the platform is, that it permits to specify
meta models in a proprietary definition language and automatically generates
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according model editors. Both meta models and models are thereby automati-
cally stored in a relational database. In addition, the platform provides a number
of extension functionalities such as a proprietary scripting language for defining
mechanisms and algorithms on models, a generic query language for models, doc-
umentation functionalities for generating reports about models or a web service
interface for establishing couplings to third party tools. These functionalities are
complemented by a multi-user rights management for controlling the accessibil-
ity to the different platform components and the models.

In the following we will illustrate how the specifications using the FDMM
formalism can be used to implement meta models on the ADOxx platform. We
start by showing how the model type for 4R business process models as defined
in equation 29 is translated into the ADOxx Library Language (ALL). These
ALL definitions are then used by the ADOxx platform to create the meta model
and automatically provide according model editors for the thus specified model
types:

Example Definition of the 4R Business Process Model Type in ALL

BUSINESS PROCESS LIBRARY <4R-IEB-Library>

ATTRIBUTE <Version number>

VALUE ""

...

ATTRIBUTE <Modi>

VALUE "MODELTYPE \"4R Business process model\" from:none

plural:\"4R Business process models\"

INCL \"Start\"

INCL \"Decision\"

INCL \"Activity\"

INCL \"Parallelity\"

INCL \"Join\"

INCL \"End\"

INCL \"Subsequent\"

INCL \"4R risk aggregation\"

INCL \"4R event\"

INCL \"aggregation\"

INCL \"influences\"

MODE \"All modelling objects\" from:all

MODE \"Documentation\" from:all no-modeling"

...

The 4R business process model type is thereby defined to contain a number
of classes that are not abstract and relationclasses and can therefore be instan-
tiated to object instances in a model editor. When mapping the definitions in
FDMM to ALL, it has to be decided, which object types in FDMM become
classes and which become relationclasses in ALL. As relationclasses in ALL can
only represent binary relations between object types of the cardinality < 1, 1 >,
only object types that satisfy this restriction can be mapped to a relationclass.
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For other relations between object types and between object types and model
types, ALL offers the interref attribut type. As a rule of thumb, FDMM ob-
ject types that correspond to edges in graph-like model types can be mapped to
relationclasses.

The definition of classes in ALL is accomplished using the ’CLASS’ key-
word. As shown in the example code below, classes are arranged in a super-
class/subclass hierarchy using a colon followed by the name of the super class.
Thereby, every class in ALL has to be a direct or indirect subclass of the pre-
defined ” BP-construct ” class. These hierarchy definitions correspond to the
definition of equation 31 as shown for the FlowObject class and the Start class:

Example Definition of the Start Class in ALL

CLASS <FlowObject> : <__BP-construct__>

...

CLASS <Start> : <FlowObject>

...

For the classes also the corresponding attributes as defined in FDMM by the
domain, range, and cardinality statements can be added in ALL. Thereby, the
name attribute is automatically added by ADOxx as it constitutes the unique
identifier of instances of a class. For every attribute in ALL, the type and poten-
tial additional information have to be specified. We show this in the following
example for the definition of the Business transaction class as specified by the
equations 36, 37:

Example Definition of the Business Transaction Class and the W and View
Attributes in ALL

CLASS <Business transaction> : <__BP-construct__>

...

ATTRIBUTE <W>

TYPE DOUBLE

VALUE 0

...

ATTRIBUTE <View>

TYPE ENUMERATION

FACET <EnumerationDomain>

VALUE "Aggregated@Single"

...

As has already been mentioned above, relations between object types that
do not satisfy the cardinality restrictions of relationclasses in ALL or that re-
late object types and model types, have to be specified as interref attributes in
ALL. Also, in case a model type should not contain visible relations between
class instances, this attribute type can be chosen. We show this for the Process
attribute of the business transaction model type that relates an instance of a
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Business Transaction class to a 4R business process model type as specified in
equation 38:

Example Definition of the Process Interref Attribute in ALL

...

ATTRIBUTE <Process>

TYPE INTERREF

...

FACET <AttributeInterRefDomain>

VALUE "REFDOMAIN MODREF

mt:\"4R Business process model\"

max:1"

...

The definition of relationclasses in ALL requires the definition of a start
class, indicated by the FROM keyword, and a target class, indicated by the TO
keyword. We show this by the example of the influences relationclass that is
based on the specifications in equation 39 and the definition of the Influence
type attribute in equation 40:

Example Definition of the Influences Relationclass in ALL

RELATIONCLASS <influences>

FROM <4R risk aggregation>

TO <Activity>

...

ATTRIBUTE <Influence type>

TYPE ENUMERATION

FACET <EnumerationDomain>

VALUE "Time influence@Cost influence@Return influence@

Quality influence"

...

In order to permit the automatic generation of model editors from the ALL
definitions, two more aspects have to be added. First, it has to be defined, which
attributes of a class or a relationclass can be edited by a user in the model editor.
This is defined via the AttrRep attribute as shown below for the example of the
Influences relationclass:

Example Definition of the AttrRep Attribute of the Influences Relationclass in
ALL

...

ATTRIBUTE <AttrRep>

TYPE STRING

VALUE "NOTEBOOK

ATTR \"Influence type\""

...
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Second, also a graphical representation has to be added if the classes and
relationclasses should be represented in a graphical way in the model editor.
This is defined via the GraphRep class attribute that contains a proprietary
grammar for defining the visual representation of a class or a relationclass. It
can either be coded by hand or defined using a visual editor as provided by the
Open Models Initiative4:

Example Definition of the GraphRep Classattribute of the 4R Event Class in
ALL

CLASS <4R event> : <_4R-Superclass_>

...

CLASSATTRIBUTE <GraphRep>

VALUE "GRAPHREP

PEN w:0.07cm

ELLIPSE x:0cm y:0cm rx:2cm ry:1cm

ATTR \"Name\" h:c w:c"

Finally, when all ALL definitions are in place, the ADOxx platform auto-
matically generates model editors for the defined model types. As an example,
an editor for the 4R business process models is shown in figure 5.

Fig. 5. Screesnhot of the Model Editor for 4R Business Process Models on ADOxx

4 See http://www.openmodels.at/web/omi/services
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6 Discussion

Based on the constructs of the FDMM formalism it is possible to specify ADOxx
meta models and models in a mathematically rigorous way that builds only upon
set theory and first order logic statements. With these mathematical foundations,
the ADOxx meta modeling approach can be compared to other approaches and
used as a basis for further formal specifications or implementations. As has been
discussed in [27], the FDMM formalism differs in several aspects from the ADOxx
Library Language. In the paper at hand this could be shown in particular for
the translation of object types into classes and relationclasses in ALL. As ALL
requires the definition of relationclasses for the visualization of edges, not all
object types specified in FDMM can be used for this purpose. Therefore, at this
point it has to be decided by the developer of the ALL definition, how object
types should be translated into ALL classes and relationclasses. In addition, also
graphical representations and the definitions for editable attributes have to be
added during this translation as they are not contained in FDMM. Regarding
the graphical representations, it could thereby also reverted to the approach of
semantic visualization that permits to automatically assign graphical represen-
tations based on semantic annotations [23].

7 Related Work

When comparing FDMM and ADOxx to similar approaches in the literature,
two directions can be taken. The first is the comparison to other meta modeling
approaches and the second is the comparison to other kinds of formalizations for
meta modeling approaches.

Based on the classification proposed by [20], the FDMM and the ADOxx meta
modeling approach directly compare to domain-specific modeling approaches
that view meta models as language specifications. This is in contrast to ap-
proaches that treat meta models as software structure specifications, which is
the typical use case for approaches such as EMOF [28], EMF [29] or KM3 [30].
A common aspect of domain-specific modeling approaches is the creation of vi-
sual model editors from meta models that are based on one pre-defined meta
meta model and that use a graphical representation for the concrete syntax of
the defined language. [8] also denote this direction as heavyweight approaches
of language definition and distinguish it from lightweight approaches that adapt
a generic meta model with domain-specific concepts. An example for the latter
direction would be the use of the profile package in UML, e.g. to extend existing
meta classes with the stereotyping mechanism [31].

FDMM and ADOxx can be directly compared to the approaches analyzed
in [8]: thereby a core feature of ADOxx and FDMM that is shared with the
GME and ARIS meta modeling approaches is the use of model types for defining
the grouping of object types and their instances. In contrast to all approaches
compared by Kern et al. and ADOxx, FDMM does not use any relation concept
as a first class concept. Neither ADOxx nor FDMM use explicit role type concepts
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that provide further mechanisms for specifying relationships such as semantic
dependencies between object types. However, in ADOxx such concepts can be
expressed using the ADOscript language and enforced during modeling.

For the meta modeling approaches mentioned above, formalizations have
been discussed for EMOF e.g. [32, 33] and KM3 [30]. However, they differ from
ADOxx in regard to their focus on the specification of software structures. An-
other approach that shows some similarities to the way the FDMM formalism has
been conceived can also be found in the specification of the Object Constraint
Language (OCL) [34][Annex A]. However, the main difference is that FDMM is
directed towards supporting the representation of meta models and models. The
OCL specification does not describe a meta modeling approach but rather an
approach to formalize one particular modeling language, i.e. UML together with
constraints.

Furthermore, the domain, range, and card functions and the associated con-
straints described for them have a similarity with the notions of domain, range
and cardinality restrictions used in in description logics [35]. In contrast to the
description logic case, our work is not intended to give a semantics for some
formal language. Instead it is intended to provide a formal description of an
existing system that has been effectively used in several application domains.

8 Conclusion and Outlook

In this paper we presented a formalism to describe the core constituents of the
ADOxx meta modeling approach and showed its application to a concrete mod-
eling language as well as how it can act as a basis for an implementation. It is
the first formal definition for ADOxx meta modeling concepts and is therefore
expected to be of benefit also for other projects using the ADOxx approach.
Future work will therefore include the application to further modeling languages
and the evaluation of the usability of the formalism. This concerns in particular
the definition of algorithms, e.g. for describing analyses and simulations of mod-
els. Finally, it will also be investigated how the formalism can be represented
visually to enhance the interaction with it and enable the easy re-use of formal
meta model and model statements.
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