42nd International Conference on Conceptual Modeling
ER Forum 1 — Tools & Technology
Lisbon, 7 November 2023

CONCEPTUAL MODEL INTERPRETER
FOR
LARGE LANGUAGE MODELS

A UNI
Felix Harer ER
=
University of Fribourg, Switzerland UNIVERSITE DE FRIBOURG

UNIVERSITAT FREIBURG

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

OUTLINE

1. Evolution of LLM Applications
2. Conceptual Modeling With LLMs
— State of the Art
— Research Objectives and Exploratory Approach
— Architecture and Prototype
3. Experimental Results
— UML Conceptualization
— Graph Generation From Data

4. Discussion and Outlook

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

1. EVOLUTION OF LLM APPLICATIONS

» Large Language Models (LLMs)
— Support for language-related tasks, primarily text completion

— Recent success of Generative Pre-trained Transformer models (GPTs)

Qutput
Softmex
i Linear |
... \N layers
| Feed Forward |
N layers = VEnqu‘er
> R
Concatenate e Add & Normalize | Multi-Head
Crosts-?ttentnon Decoder
— - K[V
((| Feed Forward |
[e Add & Normalize
Masked
A il f_)" heads Multi-Head Multi-Head
[[[Self-Attention Self-Attention
[Linear [Linear [Linear kt vf d Kt v
\‘_ P ,/" L /
Positional _, Positional
Encoding Encoding

Vaswani et al. (2017): Attention is all you need.

Figure by Hu and Buehler (2023): Deep language models for interpretative and predictive materials science.

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

Input Embedding

Input

Qutpul Embedding

Target

1. EVOLUTION OF LLM APPLICATIONS

= Evolvement of Applications

— Language-related:
Generation, summarization, question answering, translation, analysis etc.

— Multi-modality:
Audio transcription and translation, voice cloning, image description and
generation, video and 3D scene generation, 3D object generation etc.

— Software:
Analysis and generation of source code and, recently, code interpretation

g Plot(y=ax3+bx2 +cx+d)

> this plot, | need the values for the constants a, b, ¢, and d. Could you please

Images by Moritz Kremb, @moritzkremb, X

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

2. CONCEPTUAL MODELING WITH LLMS

= State of the Art

— Software models and conceptual models (e.g. Camara et al., Burgueno et al.)
such as UML class diagrams

— BPM applications (Vidgof et al.)

— UML, ER, BPMN, domain-specific models, LA
abstract UML generation (Fill et al.) /j\
@ CE
mra| X [ama

Hotel 7(“\” 47
Room 0 © G

o X: String '

(0.N)
1
*
- (0.N) © "
ues —— o Omega: String

Fill et al. (2023): Conceptual Modeling and Large Language Models: Impressions From First Experiments
With ChatGPT

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

2. CONCEPTUAL MODELING WITH LLMS

= State of the art applied for Conceptual Modeling with LLMs
— Natural language descriptions
— Model source code generation, e.g., for PlantUML

— Code generation with execution with instant feedback

Prompt LLM Interpreter Response
. Generate
Specify Render Model Evaluate
. > Model —P >
Modeling Task Syntax Model
Sytanx
automated

iteration with refinement

- Code Interpreter for Conceptual Models

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

2. CONCEPTUAL MODELING WITH LLMS

- Research Objectives

(1) Determine whether a conversational approach with instant feedback and
step-wise refinement can be realized with state-of-the-art commercial or
open source LLMs and interpreters.

(2) Determine how a possible realization could be constructed in terms of an
architecture.

- Exploratory Research Approach

— Requirement specification, construction of an architecture and prototype
supporting multiple LLMs and interpreters to address objective (2)

— Experimental application of LLMs and interpreters to address
objective (1), in particular GPT-4 and Llama 2 LLMs with Plantweb interpreters

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

2. CONCEPTUAL MODELING WITH LLMS

= Architecture Overview

<<Subsystem>>
Client Application
<<Subsystem>> <<Subsystem>>
Conversation Data Store
Conversational
User Interface Data Store
1.1:select LLM | 3.1: enter prompt | 1.4: create conversion 1
1.2: set LLM parameters | 3.6: append LLM response 1 1.5: set LLM configuration
2.1: select interpreter | 4.1: parse LLM response |, 2.4: set interpreter configuration
2.2: set interpreter parameters | | 4.5: append interpreter output 1 3.2: insert prompt T
3.5: insert LLM response T
4.4: insert interpreter output 1
Conversation
Manager
1.3a: initialize LLM |, 1.3b: load LLM files | 2.3: initialize interpreter |,
3.3a: request run prompt | 3.3b: run prompt | 4.2: run concrete syntax input |
3.4a: receive response T 3.4b: return response 4.3: return interpreter output T
<<Subsystem>> <<Subsystem>>
LLM Local Interpreter
[I— I
LLM API . Interpreter
: LLM Runtime :
Client Runtime

UML Communication Diagram

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

2. CONCEPTUAL MODELING WITH LLMS

= Prototype

LLM Settings ,1 Stop Deploy
Model

Create a class diagram in PlantUML code according to the following description. An order

OpenAl/gpt-4 v & & & ?
consists of an order header and one or more order itmes. Each order hasanid and a
timestamp. In an order header, a customer is referenced in addition to a billing address, a
API keys found: Replicate, OpenAl shipping address and a payment method. For the customer, an id as well as first name, last

name and a registration timestamp are known in addition to a billing address and potentially

temperature multiple shipping addresses.
0.20
-
0.01 5.00 3)
Running Inference: OpenAl/gpt-4 ...
tOp_p
0.90 Here is a PlantUML class diagram based on your description:
0
0.01 1.00
@startuml
frequency_penalty class Order {
0.00 +id
® +timestamp
-2.00 2.00 +0OrderHeader
+0rderItems[]
presence_penalty }
0.00
O
-2.00 2.00 class OrderHeaderI
Interpreter Settings
Interpreter
our message
Plantweb/PlantUML v [h(g }

https://github.com/fhaer/llm-cmi

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

https://github.com/fhaer/llm-cmi

3. RESULTS - UML CONCEPTUALIZATION

» Conceptual modeling task to create a UML class diagram
= Scenario description in natural language

= Generation of PlantUML source code using
— LLM: GPT-4 and Llama 2
— Interpreter: Plantweb/PlantUML

= Scenario (1/2):

Create a class diagram in PlantUML code according to the following description. An order
consists of an order header and one or more order itmes. Each order has anid and a
timestamp. In an order header, a customer is referenced in addition to a billing address, a
shipping address and a payment method. For the customer, an id as well as first name, last
name and a registration timestamp are known in addition to a billing address and potentially
multiple shipping addresses.

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

3. RESULTS - UML CONCEPTUALIZATION

= UML generation by GPT-4 (1/2)

— Generatlon Of Syntactlca”y correct I) Running interpreter: Plantweb/PlantUML ...
PlantUML models " © orer |
oid
— Classes, attributes, relationships o

o Orderltem[]

with multiplicities

contains contains

— Overall accurate and appropriate :
for the scenario (©) Orderteader
. M E gilljlisr:o?g;ress © Crdertom
— Detailed Observations L SinsAddees

o PaymentMethod

1 1

- Visibility inconsistent

has uses
- Address classes not generalized :
@ Customer
- Capitalization inconsistent ;dm hes ©paymentitetrod
o registrationTimestamp

o BillingAddress
o ShippingAddress|[]

1
has has
1 1

@ BillingAddress © ShippingAddress

— Variability in results and
design choices

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

3. RESULTS - UML CONCEPTUALIZATION

| U M L g en e rat| O n by G PT—4 (2/2) I) Running interpreter: Plantweb/PlantUML ... ' (©) order

o id

o timestamp

o OrderHeader
o Orderltem[]

Update the diagram as follows: Addresses, both billing

and shipping addresses, have a first name and last /contains contains

name, an address line 1 and 2, a postal code, a city and a (© Orderteader I©Orderltem)

o Customer

country code. In an order item, there are a quantity, a

o BilingAddress o g:;?:w
price, and an article is referenced. Each article has an ° E';fnﬁ::rﬁ':n‘g{;? o Article
article number, a name and a description. ' ;) 1
/s/ uses references
;
— New classes correctly added (e , —
oid © Article
. . has | paiame (©)PaymentMethod has o articleNumber
— Attributes correctly introduced > gsiatonTinesams

o ShippingAddress[]
— Introduction of an “Address” class / \
with a composition pattern ‘

|©Bil|ingAddress @ShippingAddrsss
. . | o Address o Address
- Prevents the duplication of 1
address attributes ;
© Address
o firstName

- Apparently favoring

o addressLine;
composition over inheritance < oot
O countryCode .

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

3. RESULTS - UML CONCEPTUALIZATION

= Conceptualization by Llama 2 (1/2):

Generation of syntactically correct PlantUML models without relationships

Classes and attributes with data types created

Requests to add relationships ignored or using incorrect syntax

Detailed Observations

- Also no generalization of address classes, however, a single address class

prevents duplicate attributes

- Hallucinations of attributes

© OrderHeader

@ Order
id: int

timestamp: datetime
orderHeader: OrderHeader
orderltems: list{Orderltem]

id: int

customer: Customer
billingAddress: Address
shippingAddress: Address
paymentMethod: PaymentMethod

(©) Address

street: string
city: string
state: string
zip: string
country: string

@ Customer
id: int

firstName: string

lastName: string
registrationTimestamp: datetime
billingAddresses: listfAddress]
shippingAddresses: list{Address]

@ Orderltem

@ PaymentMethod

id: int
paymentType: string produp tNgme: sHing
paymentDetails: string qu_an?lty. i

price: float

order: Order

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

3. RESULTS - UML CONCEPTUALIZATION

= Conceptualization by Llama 2 (2/2):
— New classes correctly added

— Attributes introduced if not conflicting with previously hallucinated attributes

@ Order © OrderHeader © Gnsiomer
o id: int
o firstName: string
o lastName: string
o registrationTimestamp: datetime
o billingAddresses: list{Address]
o shippingAddresses: list{Address]

o id: int

o customer: Customer

o billingAddress: Address

o shippingAddress: Address

o paymentMethod: PaymentMethod

o id: int

o timestamp: datetime

o orderHeader: OrderHeader
o orderltems: list{Orderltem]

@ Address
@ Orderltem

o street: string idei
o city: string PaymentMethod o id: int Article
o state: string @ Y o productName: string @
o zip: string o paymentType: string O quantity: int o articleNumber: int
o country: string o paymentDetails: string o price: float O name: string
o firstName: string o article: Article o description: string
o lastName: string o order: Order

-
UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

3. RESULTS - GRAPH GENERATION FROM DATA

= Generation of graphs on the instance-level

= Scenario description containing exact data in a custom syntax and
formatting instructions

= Generation of Graphviz source code using
— LLM: GPT-4 and Llama 2
— Interpreter: Graphviz

= Scenario:
Consider the following data stored in triples using the

format (s,t,w) and create a directed graph in Graphviz
syntax. For each triple, create a directed edge from node
s to node t with weight w. Show nodes as rectangles with
rounded corners and add labels numbering them N1, N2
and so on. Adjust the width of edges according to the
weight. ("3e4a8fld","5b6c7d2e",1),
("3e4a8f1d""9a8b7c6d",2), ("3e4a8f1d","2f4a6e8d",3),
("5b6c7d2e","9a8b7c6d",2), ("9a8b7c6d","5b6c7d2e" 1),
("9a8b7c6d","2f4a6e8d",2), ("2f4a6e8d","3e4a8f1d",3)

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

3. RESULTS - GRAPH GENERATION FROM DATA

= Generation of graphs by GPT-4:
— Generation of syntactically correct Graphviz code
— Recognition of custom syntax
— Correct graph, according to the data
— Recognition of formatting instructions, except for weight representation

— Low variability, no hallucinations

digraph G { N1
graph [splines=polyline]
node [shape=box, style=rounded
"3e4a8f1d" [label="N1"]
"5hec7d2e" [label="N2"] ‘
"9a8b7c6d" [label="N3"]
"2f4a6e8d" [label="N4"]
"3e4a8f1ld" -> "5b6c7d2e" [penwidth=1
"3e4a8f1d" -> "9a8b7c6d" [penwidth=2 N4

[...]

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

3. RESULTS - GRAPH GENERATION FROM DATA

= Generation of graphs by Llama 2:
— Generation of syntactically correct Graphviz code
— Recognition of custom syntax
— Correct graph, according to the data
— Formatting without edge width and style attribute (corners)
— Node names not numbered, superfluous data in edge labels

— Variability regarding edge labels, no hallucinations

3edaBfld

(3e4aBf1d, 5b6c7d2e, 1)

5b6¢c7d2e (3e4a8f1d, 9a8b7c6d, 2)

(5b6c7d2e, 9a8b7c6d, 2)_(9a8b7c6d, Sb6cTd2e, 1) 3eda8fld, 2f4abe8d, 3)(2f4a6e8d, 3edasfld, 3)

9a8b7c6d

(9a8b7c6d, 2f4abe8d, 2)

A
2f4a6e8d

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

4. DISCUSSION AND OUTLOOK

= Application of LLMs for Conceptual Modeling using a conversational
approach (Objective 1)

— Language-based approach and comprehension of scenarios and data well
suited for conceptual modeling tasks

— Not only a new interface — natural language instructions and conceptual
understanding

— Main Challenges for LLMs, mainly Llama 2 and other open source LLMs:
- High variability over prompts and responses
- Parametrization
- Unknown syntax
- Comprehension of semantics

- Hallucination

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

4. DISCUSSION AND OUTLOOK

= Construction of an architecture (Objective 2):

— Architecture and prototype for multiple state-of-the-art LLMs and
interpreters

— Experimentation environment for LLM-related studies

— Integration in applications, e.g., for the ad-hoc model generation

—> Directions of future research

— LLM capabilities are improving, further studies needed regarding
parametrization, prompt engineering, training data sets, specialized models

— Interpreters for modeling and domain-specific languages

— Software integrations utilizing LLMs beyond textual instructions and
interpreters beyond rendering

- Potential to lower the barrier for modeling and design activities

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

O Thank you for your attention

UNIVERSITE DE FRIBOURG
UNIVERSITAT FREIBURG

felix.haerer@unifr.ch

* Wﬁ\‘w‘

unifr.ch/inf/digits

Al'h - el | ‘ I i _’._LQ

UNIVERSITY OF FRIBOURG | DEPARTMENT OF INFORMATICS
Felix Harer | Digitalization and Information Systems Group

	Slide 1: Conceptual Model Interpreter for Large Language Models
	Slide 2: Outline
	Slide 3: 1. Evolution of LLM Applications
	Slide 4: 1. Evolution of LLM Applications
	Slide 5: 2. Conceptual Modeling with LLMs
	Slide 6: 2. Conceptual Modeling with LLMs
	Slide 7: 2. Conceptual Modeling with LLMs
	Slide 8: 2. Conceptual Modeling with LLMs
	Slide 9: 2. Conceptual Modeling with LLMs
	Slide 10: 3. Results – UML Conceptualization
	Slide 11: 3. Results – UML Conceptualization
	Slide 12: 3. Results – UML Conceptualization
	Slide 13: 3. Results – UML Conceptualization
	Slide 14: 3. Results – UML Conceptualization
	Slide 15: 3. Results – Graph Generation From Data
	Slide 16: 3. Results – Graph Generation From Data
	Slide 17: 3. Results – Graph Generation From Data
	Slide 18: 4. Discussion and Outlook
	Slide 19: 4. Discussion and Outlook
	Slide 20

