
Scalable Model-Based Decentralized Applications
in the Cloud Using Certificates and Blockchains

Felix Härer
Digitalization and Information Systems Group

University of Fribourg
Fribourg, Switzerland

E-Mail: felix.haerer@unifr.ch

Abstract—Cloud-based applications can achieve high perfor-
mance and scalability provided through the infrastructure of
cloud platforms. Distributed servers and technologies such as
serverless computing further allow for distribution in terms of
the network and for parallel execution. Distribution, however,
does not imply decentralization, which additionally requires non-
centralized coordination without trusted third parties. For exam-
ple, independent network nodes may verify the execution using
blockchain consensus. Despite advances in consensus algorithms,
the execution of decentralized applications is challenging due to
scalability and, when combined with cloud computing, the issue
of authenticating distributed parties and execution states. This
paper extends a model-based approach for execution and instance
tracking on cloud platforms with scalability and authentication
through certificates and blockchains. Thereby, distributed parties
monitor and track execution states using models. The approach
is extended by (a) an architecture for the authenticated and
scalable distribution, execution, and tracking with executable
models, and (b) a prototype evaluating feasibility for Amazon
Web Services (AWS) and the Ethereum blockchain. Results
indicate the potential for scalability and decentralization through
executable models in the cloud with certificates and a blockchain.

Index Terms—Decentralized Applications, Blockchain, Certifi-
cates, Authentication, Serverless Computing, Executable Models

I. INTRODUCTION

Over the years, the execution of applications has evolved
towards increased distribution, shifting from traditional client-
server models to advanced cloud-based architectures and plat-
forms [1]. These platforms enable applications to be deployed
at scale with concurrent execution. Another development is the
emergence of blockchain-based decentralized applications [2],
introducing a new paradigm where (a) the deployment and
execution are independent of centralized technical infrastruc-
tures, e.g., individual servers, and (b) parties involved in
deployment, execution, or governance coordinate without cen-
tralized control [3], e.g., using roles, permissions, and voting
mechanisms without central authorities or trusted third parties.
Decentralization has the potential to support decentralized
organizations [4], [5], processes [6], and industrial applica-
tions [7] in areas such as IoT, supply chain management,
source tracing, and other domains utilizing credits or tokens.

This work is partially supported by the Swiss National Science Foundation
project Domain-Specific Conceptual Modeling for Distributed Ledger Tech-
nologies [196889].

Problem Statement. Decentralized applications are typi-
cally supported by blockchains, however, when involving web
servers and cloud platforms for scalability, these entities im-
pede the authenticated distribution, non-centralized execution,
and distributed tracking of the run-time behaviour. Websites
or other centralized infrastructures are usually outside the
scope of blockchain transactions and the authentication they
provide, imposing limitations for distributed parties to observe,
engage in, and verify execution in a trustworthy manner. For
example, (a) web applications hosted on cloud platforms do
not give their users insight into the execution, preventing
the verification of execution behaviour. (b) When interacting
with blockchain transactions in web applications, e.g., for
transferring asset tokens by a smart contract, users cannot trust
the website correctly display execution results. (c) Attacks
related to DNS, URL hijacking, or impersonation exacerbate
the aforementioned limitations.

Research Objective and Contribution. Towards combining
cloud execution with decentralized applications, this paper
extends a model-based approach for running such applications
in the cloud [3], [8] with scalability and authentication through
certificates and blockchains. The contribution is (a) an archi-
tecture for the authenticated and scalable distribution, execu-
tion, and tracking with executable models, and (b) a prototype
showing feasibility for Amazon Web Services (AWS) and the
Ethereum blockchain.

The remainder of this paper is structured as follows. Sec-
tion II discusses background for blockchains, cloud platforms,
and certificates together with related work. Section III de-
scribes the proposed system architecture, leading to Section IV
with the prototype for demonstrating feasibility. Results are
discussed in Section V before concluding in Section VI.

II. BACKGROUND AND RELATED WORK

Blockchain technologies provide a platform for distributed
parties to store data verifiably in integrity-secured data struc-
tures and perform verifiable computations using smart con-
tracts. Typically, blockchain systems can be characterized
by a data structure of transactions, such as backward-linked
blocks [9], [10] or graphs [11], a consensus algorithm that
executes and verifies transactions [12], and a network of dis-
tributed parties operating blockchain nodes for distribution and
verification of the data structure as defined by the consensus

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Article accepted for publication by IEEE.

algorithm [13]. Unlike cloud platforms, open and permis-
sionless blockchains such as Ethereum or Cardano [14] offer
transparent execution that is verifiable by the distributed nodes
and is particularly suited for decentralized applications [2].
Smart contracts can be utilized for verifiable computation to
achieve (a) execution not dependent on centralized technical
infrastructures and (b) non-centralized coordination verified by
distributed nodes [3]. Cloud platforms, such as Amazon Web
Services (AWS) or Microsoft Azure, provide infrastructure
services, software platforms, or application services [15].
Infrastructure concerns specific physical or virtual servers,
while it is hidden in services for platforms and applications
to provide abstraction, especially through lambda functions
and serverless computing [16]. Here, execution is specified
modularly and with a functional paradigm, permitting per-
module or per-function distribution for availability, reliability,
and scalability in terms of parallel execution on distributed
servers.

Over the past years, Transport Layer Security (TLS) has
become the de-facto standard for providing authentication
and encryption on the web [17]. Established through Public
Key Infrastructure (PKI), X.509 certificates are applied for
certificate signing, asymmetric encryption, and the preparation
of symmetric encryption of end-to-end connections. With
security assumptions being predicated on the presence of
trusted authorities, the provided security and authentication
are outside the scope of blockchain transactions. Even though
blockchain-based authentication has been suggested before,
including applications such as IoT [18], Voting [19], Single
Sign On [20], as well as PKI supported by blockchains [21],
[22], authentication is not provided for execution aspects
on blockchains and web architectures. For this purpose,
blockchains could be involved in key generation and signatures
combined with X.509 certificates for web-based authentication
as suggested by the proposed architecture.

On blockchains, executable models can be applied. Related
work in this area suggests execution and tracking by moni-
toring run-time behaviour or tracing it back in time. Models
are used primarily in the execution of business processes and
workflows [23]–[26], ontologies [27], and state machines [28],
[29], in addition to attestation [30], [31], and instance track-
ing [3], [8]. The attestation concept with instance tracking
is utilized in this paper for capturing states of models over
time and for metadata distribution, allowing distributed parties
to monitor and verify. Decentralized application execution is
achieved by the proposed architecture, based on prior work [3],
with cloud platforms and a blockchain extended by web
servers and certificates.

III. PROPOSED SYSTEM ARCHITECTURE

The following subsections describe the system structure,
concepts, and procedures for execution and instance tracking.

A. System Structure

In Figure 1, the architecture of the proposed system is
shown. Components of the architecture are clients, controlling

and tracking the execution, cloud platforms, web servers, and
blockchain platforms with a smart contract to distribute and
register execution states with their respective clients based on
public keys and certificates.

A Client represents one of the distributed parties in-
volved in executing or tracking decentralized applications.
For initiating an execution, an Executable Model is prepared
within the client application. Specific to the cloud platform,
the model defines the execution logic, e.g., in terms of AWS
Step Function models written in a custom Amazon States
Language [32] or executable processes and workflows defined
by the Business Process Model and Notation 2.0 standard [33].
For each instance at run-time, the Instance Tracking
component logs individual states entered during execution
within the cloud platform and verifies states using data from
a blockchain node.

The Cloud Platform executes the platform-specific
model within an engine such as AWS Step Functions or AWS
Lambda. Control flow and data are controlled by the client and
reflected in each instance state reached during execution. The
platform is required to execute the control flow and functional
specifications with data provided by the model such that dis-
crete state data can be derived. For example, individual lambda
functions with their input and output data, state machines, or
other state-based representations might be used. Furthermore,
the platform is required to provide distribution and scalability
as well as interfaces for interacting with a blockchain API such
as web3.js [34]. For this purpose, additional platform services
or virtual machines might be used.

The Blockchain Platform hosts a smart contract for
registering execution states and clients with certificates as well
as for notifying clients when entering a state. It is required
for the smart contract to operate on an open and permission-
less blockchain network autonomously. The selected network
must support smart contracts with the capability to issue and
store client accounts based on public-private key pairs, e.g.,
Ethereum or Avalanche [35].

The Web Server publishes states in the form of an
instance protocol. Over time, the protocol is appended by
clients controlling the execution. In parallel, clients track the
execution of an instance and subscribe in order to observe
execution behaviour. For authentication and encryption, the
server is required to support X.509 certificates and TLS
connections as outlined in the following processes.

B. Execution and Instance Tracking

The procedure and overall lifecycle is given corresponding
to Figure 1 by the steps 1. deployment, 2. running instances
with key generation and the creation and signing of certificates,
3. entering and publishing states, 4. tracking and verifying
states, and 5. the termination of instances.

1. Deploy: The executable model is deployed by a client
on the cloud platform’s execution engine, resulting in
data object m = (model_id,model_data). The platform-
specific model_data contains the definition of the execu-
tion. For example, a state machine in JSON syntax [32].

Executable
Model

Cloud
Platform

Blockchain
Platform

Client

 1. Deploy 3.1. Trigger
state/
transition

Execution Control

2.4. Run
5. Ter-
 minate

 3.2. Enter state/
transition

Instance Tracking

3.3. Register
state

Execution Engine

Client Application

Blockchain API
E.g. Web3 on AWS

2.3. Register
client and
certificate

E.g. AWS Step Functions, AWS Lambda
Smart
Contract

Blockchain
Network

Operate

Web Server

Instance
Protocol

Instance
Protocol
Instance

State
Instance

State
Instance

State
4.3. Verify
state

 2.2. Issue certificate for blockchain
 domain and sign fingerprintBlockchain Node

Client Application

 4.1. Client notification
event

3.4. Publish (TLS)

4.2. Subscribe (TLS)

2.1. Create
key pair

Fig. 1. Architecture for the model-based execution and instance tracking of decentralized applications, secured by certificates and blockchain-based
authentication. Clients 1. deploy executable models, 2. run instances with creation of public-private key pairs for the blockchain and certificate issuance,
3. enter and publish states in a web-hosted instance protocol as well as a blockchain smart contract, 4. track and verify states by receiving notification events
for obtaining states, subscribing to new states, and verifying states through public keys, and 5. terminate instances.

The model_id is generated as a content-based identifier
by model_id = h(model_data) with hash function h,
e.g., SHA-256 [36] for verification (step 4.).

2. Running instances:

2.1. Create key pair: The client invokes a key generation
function in the local blockchain node, capable of
creating a public-private key pair k = (kpub, kprv)
with client account ac = address(kpub), where
address is a derivation function obtaining an address
from a public key (see, e.g., [34, pp. 69-70, 73-
74]). By including the blockchain node in the client
component, key generation is initiated and performed
locally at the client without any server interaction. In
case of Ethereum, a key derivation function for use
with ECDSA is applied for a 256 bit key and the
secp256k1 curve [34].

2.2. Issue certificate for blockchain domain and sign
fingerprint: The client issues an X.509 certificate for
use with TLS at the web server through a state-of-
the-art ECC or RSA implementation compatible with
the client. The certificate crt is created with common
name CN matching the domain of the web server’s
uri. In turn, uri is linked to the client address
ac through a blockchain domain registrar, e.g., the
Ethereum Name Service (ENS) [37]. Finally, a fin-
gerprint fp is created for crt using a state-of-the-art
hash function such as SHA-256, i.e., fp = h(crt),
and signed with the private key of the client as in
fsig = sign(fp, kprv). The blockchain domain reg-
istration must have been prepared by (a) registering
a domain d as in register_name(d, ac) such that d
can be resolved to ac, (b) setting d as primary name
for ac as in set_primary_name(ac, d) such that ac
allows looking up d, and (c) adding one record with
the url under d as in add_record(d, url) such that

the web server and instance protocol will be reach-
able at url when given d. The add_record(d, url)
function stores url as a text record under domain
d at the blockchain domain registrar1. Within a gov-
ernmental or other organizational structure, a higher-
level certificate might be used in addition to signing
the certificate, e.g., initiated by a certificate signing
request (CSR).

2.3. Register client and certificate: The client registers
an account address, fingerprint, and signature
with the smart contract through the blockchain
node. For this purpose, registration function
register_certificate(ac, fp, fpsig) is invoked
by the client in a blockchain transaction storing
the transmitted information with the sender’s
account address as if as == ac. The function
stores fp and fpsig in mapping data structures of
the smart contract under the key ac. In addition,
the smart contract provides a retrieval function
(fp, fpsig) = get_certificate(ac) that returns
the fingerprint and signature. The function looks
up fp and fpsig in the data structures of the smart
contract with key ac.

2.4. Run: Execution is started from the client
side. In the execution engine, an instance is
then created, resulting in instance data object
i = (model_id, instance_id, instance_data) to be
received by the client. Depending on the cloud
platform, instance_data is composed out of further
identifiers and metadata for the geographic region
or other execution parameters. The instance_id
is generated as a content-based identifier by
instance_id = h(instance_data) for verification.

1For ENS see, e.g.: app.ens.domains/c-acd398d9f25c40b1d292bff2190a08
d7d907c568.eth?tab=records

3. Entering and publishing states:

3.1. Trigger state / transition: The client triggers entering
a new state or transition at the cloud platform. At
this point, the execution engine is invoked and the
client awaits the state change.

3.2. Enter state / transition: The execution engine has
changed the state, resulting in client-side state
data s = (instance_id, state_id, state_data) for
the platform-specific model instance. The state_id
is generated as a content-based identifier using
state_id = h(state_data) for verification at a later
point in time. State representations of the platform
in state_data can include a set of executed func-
tions with input and output data, a state of a state
machine, or similar state-based representations (see,
e.g., Amazon State Language [32]).

3.3. Register state: The client registers the entered
state with identifiers of the model, instance, and
state by invoking the smart contract function
register_state(model_id, instance_id, state_id).
In register_state, the IDs in the form of hash
values are stored with the transaction sender as in
the smart contract if the transaction sender matches
the client-provided address, i.e., if as == ac.
In addition, the smart contract provides retrieval
functions instance_id = get_instance(state_id)
returning an instance ID for a state ID and
model_id = get_model(instance_id) which is re-
turning a model ID for an instance ID. Further,
the client’s address can be retrieved through
ac = get_client(state_id)

3.4. Publish (TLS): The client appends the server-side in-
stance protocol available under domain d. The newly
reached state is stored with the state, instance, and
model data as published_state = (s, i,m) such
that any client can obtain it. TLS is applied for
authentication and encryption of the TCP client-
server connection.

4. Tracking and verifying states:

4.1. Client notification event: For each entered state, any
client involved in the execution listens and receives
notification event e = (state_id, ac) through the
blockchain node from the smart contract. Given ac,
the blockchain-based domain registrar is invoked to
obtain uri = lookup(ac), where the web server
is available and allows for subscriptions. The event
data (state_id, ac) is stored locally.

4.2. Subscribe (TLS): With event e, the client subscribes
to the instance protocol available online at uri. By
subscription, the instance protocol is obtained as a
set of published states {S | published_state ∈ S}
that is updated over time. TLS is applied for au-
thentication and encryption of the TCP client-server
connection. The connection is created if the client
successfully validates the certificate.

4.3. Verify state: Given the published states subsequently
received through the subscription, the client verifies
the prior existence of each state with the state data
received from client notification events through the
blockchain node. For each state state_id of the
instance protocol, the smart contract is called using
the blockchain node. In particular, corresponding
IDs are obtained with the smart contract func-
tions instance_id = get_instance(state_id) and
model_id = get_model(instance_id). A state is
verified if the following conditions are true.

4.3.1. The web server url is present in a record under
the address registered with the blockchain domain
registrar, i.e., uri == lookup(ac).

4.3.2. The certificate fingerprint registered with the
smart contract is signed by ac, obtained with
(fp, fpsig) = get_certificate(ac), and matches
the server-provided certificate crt in terms of the
fingerprint, i.e., if verify_signature(fpsig, ac)
and fp == h(crt) are true.

4.3.3. The published_state = (s, i,m) allows to es-
tablish the prior existence of the state with
the corresponding instance and model, i.e., if
h(s) == state_id and h(i) == instance_id
and h(m) == model_id are true.

4.3.4. The state has been registered by the client, i.e., if
the smart contract function ac == get_client(s)
is true.

The instance protocol is verified if all states are
verified.

5. Terminate: The client identified by ac terminates the exe-
cution at the cloud platform. At this point, the execution
engine and blockchain API no longer register states for
instance_id with the smart contract.

IV. IMPLEMENTATION

This section demonstrates the feasibility of implementation
using the AWS cloud platform and the Ethereum blockchain. A
prototype application has been created for the client in addition
to a web server, AWS deployments of Step Functions models,
and an Ethereum smart contract. At the client side, execution
control and instance tracking are realized in Python 3.9 and a
PostgreSQL 15 database implementation for storing instance
states. The smart contract is implemented in Solidity 0.8.18
for registering and distributing events. All components are
available online together with deployment information on the
Ethereum Sepolia testnet, the client account for smart contract
interactions and signing of certificates, the ENS name and
domain name registrations, the configured web server, and the
model, instance, and state data of executions2.

A. Executable Models on AWS
An executable model for the use case of parallel data

processing in a distributed scenario is depicted in Figure 2,
both as a State Machine Diagram (a) and in JSON format (b).

2See github.com/fhaer/Itrex-Engine-Event-Processing

{
 "StartAt": "Receive Queue Messages",
 "States": {
 "Receive Queue Messages": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-east-1:7262104

 },
 "Next": "Check For Messages"

},
 "Check For Messages": {
 "Type": "Choice",
 "Choices": [

{
 "Variable": "$",
 "StringEquals": "No messages",
 "Next": "No Messages"

}
],

 "Default": "Process Messages"
},

 "No Messages": {
 "Type": "Pass",
 "End": true

},
 "Process Messages": {
 "Type": "Map",
 "ItemsPath": "$",
 "Parameters": {
 "MessageNumber.$": "$$.Map.Item.Index",
 "MessageDetails.$": "$$.Map.Item.Value"

},
 "Iterator": {
 "StartAt": "Transform Data",
 "States": {
 "Transform Data": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload.$": "$",

{
 "StartAt": "Receive Queue Messages",
 "States": {
 "Receive Queue Messages": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-east-1:7262104

 },
 "Next": "Check For Messages"

},
 "Check For Messages": {
 "Type": "Choice",
 "Choices": [

{
 "Variable": "$",
 "StringEquals": "No messages",
 "Next": "No Messages"

}
],

 "Default": "Process Messages"
},

 "No Messages": {
 "Type": "Pass",
 "End": true

},
 "Process Messages": {
 "Type": "Map",
 "ItemsPath": "$",
 "Parameters": {
 "MessageNumber.$": "$$.Map.Item.Index",
 "MessageDetails.$": "$$.Map.Item.Value"

},
 "Iterator": {
 "StartAt": "Transform Data",
 "States": {
 "Transform Data": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload.$": "$",(a) State Machine Diagram (b) JSON

Fig. 2. AWS Step Functions model for parallel data processing in a distributed scenario, where data is received through a message queue, transformed, and
stored in a data warehouse. The model is shown as (a) state machine diagram and (b) JSON representation. A hash value h is used for identification based
on the model content and for verification.

Starting with a message queue, data is received, transformed
with parallel processing, and stored in a data warehouse.
Oftentimes, this pattern is found in distributed applications,
e.g., involving compute- and data-intensive processing of IoT
data, business transactions, industrial system data, or analytics
and machine learning. On the cloud platform, services com-
posed as executable models here utilize Step Function models.
Model elements are task states with service interactions, initial
and final states, and additional elements for mapping and
control flow. Using AWS services, messages are received via
AWS Lambda with an SQS message queue and processed
concurrently with data transformation in Lambda, updating
data warehouse records in DynamoDB, and dequeuing in
Lambda. Additional tests incorporated further step function
models for machine learning training and IoT device data
processing.

B. Prototype

Two operating modes are distinguished in the client. (a)
Execution control with model deployment and instantiation as
well as triggering and tracking of AWS execution events for
Step Function states and their smart contract registration. (b)
Instance tracking and analysis for publishing, listening, and
subscribing to execution states at the client side as well as the
server-side instance protocol.

1) Execution Control on AWS and Smart Contract Calls:
The client application first deploys executable models of
the aforementioned use case. At this point, the client cre-
ates a public-private key pair with the blockchain node

and a certificate for the previously provisioned domain and
web server. In testing, a standard browser-compatible cer-
tificate was issued using RSA with 2048 bit in the form
of a crt file. The file was applied to SHA-256 for the
fingerprint and signed with the client’s private key based
on ECDSA with a 256 bit key. The blockchain domain
registration was carried out with ENS for the domain
c-acd398d9f25c40b1d292bff2190a08d7d907c568.eth through
transactions signed with the client’s private key3.

Subsequent state transitions are triggered and observed in
AWS CloudWatch event logs. The observed events include
model deployments, running instances, entering states, and
terminating instances. While observing events, each state is
stored with corresponding state, instance, and model data,
processed in JSON format, and normalized regarding the
formatting. This data is the input of the SHA-256 function
that calculates the content-based identifiers.

Figure 2 shows one of the deployed models with JSON
data and the calculated hash value h, indicated at the bottom
of the Figure. The JSON data of instances encompasses the
Amazon Resource Names (ARN) of the execution and state
machine, including the AWS region, with additional metadata
such as timestamps of the instance start and termination, name,
and status. States are represented with JSON data containing
identifiers, names, timestamps, and state types, as well as the
input data and output data of each state in the execution trace.
States are dependent on pre-states and uniquely represented.

3See app.ens.domains/c-acd398d9f25c40b1d292bff2190a08d7d907c568.eth

Fig. 3. AWS Step Function instance created from the model shown in Fig. 2. The instance consists of 13 states for parallel data processing, executed in
multiple concurrent iterations. By chance, the last state of the instance belongs to "Iteration #2".

Calculating hash values for the instance protocol involves
multiple states, thus, individually calculated state hash values
are summarized in a root hash value of a Merkle tree [34].
In terms of performance, the client-side hash function calcu-
lations resulted in a negligible delay in the millisecond range.

For model, instance, and state data of one of the instances,
Figure 3 visualizes the state machine on the AWS platform.
When the execution engine enters a new state of an instance,
the client captures the corresponding event and calculates h,
as indicated in the figure. When entering a state, the client
calls the smart contract’s registration function for storing the
identifier data based on the hash values. By this action, clients
are notified through a contract event. Finally, the hash values
are published together with model, instance, and state JSON
data by sending HTTP PUT requests to the server.

2) Instance Tracking and Instance Protocols: From the
client point-of-view, execution events are observed in order
to store instance states locally with state, instance, and model
data such that an instance protocol can be published for other
clients. Upon the notification by an event, the client stores
the ENS domain, client account, and state identifier locally in
PostgreSQL and sends an HTTP GET request to subscribe to
the server-side instance protocol. When sending the request,
certificate validation is carried out before the server retrieves
and responds with the registered model, instance, or state
JSON data. For verification with the blockchain node, hash
values are calculated, stored as identifiers, and compared to the
locally stored model, instance, and state identifiers originating
from the smart contract. In this way, the verification follows
the concept of blockchain-based attestation [31], where valid-
ity is established through (a) integrity, by re-calculation and
comparison of hash values on the client side, (b) the existence
of the data at a prior point in time, and (c) the client address,
requiring it to be present as transaction sender for the state

registration function of the smart contract.
An example for the execution states of an instance h

= a681[...]779d and model h = c632[...]81e1 is shown in
Figure 4. It lists 13 locally captured instance states that are
stored in a client-side database as well as the server-side
instance protocol using JSON. The initial state machine model
is given in Figure 2 and results in the 13 states corresponding
to Figure 3. These states of the type "task state" perform inter-
actions with services for computation or data operations. State
1 executes the "Receive Queue Message" lambda function
for receiving data messages, registered at time 1678443257
(row 1, Figure 4). The conditional "Check For Messages"
is evaluated "true" and starts the parallel processing element
"Process Messages". Tasks within this element are executed for
each message. In this case, four messages started concurrent
iterations of the tasks "Transform Data", "Update Warehouse",
and "Dequeue". In particular, a lambda function converts data
types and formats in "Transform Data", a "put" operation
stores data in a data warehouse using the DynamoDB database,
and "Dequeue" finally removes the message from the queue.
Each task execution over the four iterations has been captured
in a state. E.g., state 2 shows the "Transform Data" task in
"Iteration #0" occurred first and was registered 11 s after the
initial state (row 2). State 13 reveals that the final task of
"Iteration #2" occurred last, 81 s after the first state (row 13).
The corresponding blockchain transactions are stored in the
Ethereum Sepolia testnet under the client account4.

V. DISCUSSION

This paper investigates how blockchain and cloud-based ex-
ecution can be combined for decentralized applications while
providing scalability and authentication through blockchains

4See sepolia.etherscan.io/address/0xAcD398d9F25C40b1d292bfF2190A08
D7D907c568

Fig. 4. Execution states of the instance shown in Fig. 3. The table displays local instance states, stored in a PostgreSQL 15 database at the client. The web
browser below shows the instance protocol stored at the web server in JSON data. With completed verification of the local states, the client- and server-side
data matches. The server-side data is obtained through the domain c-acd398d9f25c40b1d292bff2190a08d7d907c568.eth registered in ENS with client account
address 0xAcD398d9F25C40b1d292bfF2190A08D7D907c568 and URI record https://c-acd398d9f25c40b1d292bff2190a08d7d907c568.host.

and certificates. In order to address this research objective,
instance tracking [3], [8] and attestation [31] approaches are
applied with an extended architecture and prototype imple-
mentation.

As a first result, the architecture describes the components
required for executing models on cloud platforms together with
recording execution states using a smart contract and instance
protocols on a web server.

Secondly, the architecture shows the possibility of com-
bining blockchain- and certificate-based validation and au-
thentication by (a) linking blockchain account addresses with
their public keys to domain names, e.g., using ENS, (b)
linking the account addresses to server-side data referenced
by hash values in a smart contract, (c) and verifying the
published data at distributed clients using the hash values from
the blockchain in combination with authentication established
through the account address of the domain, the certificate, and
the certificate signature registered with the smart contract.

Thirdly, regarding decentralized applications, the architec-
ture permits (a) the recording of instance protocols locally for
each distributed party in a verifiable manner, (b) the tracking
of states, instances, and models, and (c) the analysis of past
executions. In these use cases, the feasibility of implementa-
tion could be positively evaluated on the Ethereum blockchain
and AWS with Step Function models.

In summary, the architecture combines cloud platforms and

blockchains towards enabling scalable and secure applications.
Regarding the support of decentralized applications, cloud
platforms carry out the execution as centralized entities, how-
ever, they do provide execution control for distributed parties
through role concepts, geographic distribution, and redundancy
through serverless computing models such as lambda functions
and state machines. The execution and instance tracking
approach supports these concepts and might be extended to ad-
dress further aspects related to decentralization such as control
and feedback mechanisms, or governance. An implication of
the demonstrated architecture is that decentralized applications
can utilize blockchains and smart contracts for decentralization
aspects in combination with cloud platforms and serverless
computing for secure and scalable applications.

VI. CONCLUSION AND OUTLOOK

Overall, the proposed architecture suggests decentralized
applications can be supported through model-based execution
and instance tracking on blockchains and cloud platforms with
scalability and authentication. The enhanced performance and
security properties obtained through this approach could be
beneficial for data- and compute-intensive applications such as
machine learning, IoT operations, workflow automation, or for
collaborations and decentralized organizations. Future research
will focus on evaluating further decentralization properties for
the coordination of data- and compute-intensive executions.

https://c-acd398d9f25c40b1d292bff2190a08d7d907c568.host

REFERENCES

[1] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The Serverless
Computing Survey: A Technical Primer for Design Architecture,” ACM
Computing Surveys, vol. 54, no. 10s, 2022, 10.1145/3508360.

[2] K. Wu, Y. Ma, G. Huang, and X. Liu, “A first look at blockchain-based
decentralized applications,” Software: Practice and Experience, vol. 51,
no. 10, 2021, 10.1002/spe.2751.

[3] F. Härer, “Executable Models and Instance Tracking for Decentralized
Applications - Towards an Architecture Based on Blockchains and Cloud
Platforms,” in Proceedings of the PoEM 2022 Workshops and Models
at Work Co-Located with Practice of Enterprise Modelling 2022, ser.
CEUR, vol. 3298, 2022.

[4] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang, “Decen-
tralized Autonomous Organizations: Concept, Model, and Applications,”
IEEE Transactions on Computational Social Systems, vol. 6, no. 5, 2019,
10.1109/TCSS.2019.2938190.

[5] F. Härer, Integrierte Entwicklung Und Ausführung von Prozessen in
Dezentralen Organisationen. Ein Vorschlag Auf Basis Der Blockchain.
Dissertation. University of Bamberg Press, 2019, 10.20378/irbo-55721.

[6] ——, “Process Modeling in Decentralized Organizations Utilizing
Blockchain Consensus,” Enterprise Modelling and Information Systems
Architectures (EMISAJ), vol. 15, 2020, 10.18417/emisa.15.13.

[7] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Leung,
“Decentralized Applications: The Blockchain-Empowered Software Sys-
tem,” IEEE Access, vol. 6, 2018, 10.1109/ACCESS.2018.2870644.

[8] F. Härer, “Decentralized Business Process Modeling and Instance Track-
ing Secured By a Blockchain,” in Proceedings of the 26th European
Conference on Information Systems (ECIS). AIS Electronic Library
(AISeL), 2018.

[9] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008,
accessed on 2023-03-12. [Online]. Available: https://bitcoin.org/bitcoin.
pdf

[10] V. Buterin, “Ethereum: The Ultimate Smart Contract and
Decentralized Application Platform,” 2013, accessed on 2023-03-12.
[Online]. Available: http://web.archive.org/web/20131228111141/http:
//vbuterin.com/ethereum.html

[11] Q. Wang, J. Yu, S. Chen, and Y. Xiang, “SoK: DAG-based
Blockchain Systems,” ACM Computing Surveys, vol. 55, no. 12, 2023,
10.1145/3576899.

[12] S. Bouraga, “A taxonomy of blockchain consensus protocols: A survey
and classification framework,” Expert Systems with Applications, vol.
168, 2021, 10.1016/j.eswa.2020.114384.

[13] M. Dotan, Y.-A. Pignolet, S. Schmid, S. Tochner, and A. Zohar, “Survey
on Blockchain Networking: Context, State-of-the-Art, Challenges,” ACM
Computing Surveys, vol. 54, no. 5, 2021, 10.1145/3453161.

[14] F. Härer, “Towards Interoperability of Open and Permissionless
Blockchains: A Cross-Chain Query Language,” in 2022 IEEE In-
ternational Conference on E-Business Engineering (ICEBE), 2022,
10.1109/ICEBE55470.2022.00041.

[15] F. Nadeem, “Evaluating and Ranking Cloud IaaS, PaaS and SaaS Models
Based on Functional and Non-Functional Key Performance Indicators,”
IEEE Access, vol. 10, 2022, 10.1109/ACCESS.2022.3182688.

[16] H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey on server-
less computing,” Journal of Cloud Computing, vol. 10, no. 1, 2021,
10.1186/s13677-021-00253-7.

[17] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost, N. Vallina-
Rodriguez, and O. Hohlfeld, “Tracking the deployment of TLS 1.3 on
the web: a story of experimentation and centralization,” ACM SIGCOMM
Computer Communication Review, vol. 50, no. 3, pp. 3–15, Jul. 2020.
[Online]. Available: https://dl.acm.org/doi/10.1145/3411740.3411742
10.1145/3411740.3411742.

[18] A. Garba, D. Khoury, P. Balian, S. Haddad, J. Sayah, Z. Chen,
Z. Guan, H. Hamdan, J. Charafeddine, and K. Al-Mutib,
“LightCert4IoTs: Blockchain-Based Lightweight Certificates
Authentication for IoT Applications,” IEEE Access, vol. 11, 2023,
10.1109/ACCESS.2023.3259068.

[19] D. Khoury, E. F. Kfoury, A. Kassem, and H. Harb, “Decentralized
Voting Platform Based on Ethereum Blockchain,” in 2018 IEEE In-
ternational Multidisciplinary Conference on Engineering Technology
(IMCET), 2018, 10.1109/IMCET.2018.8603050.

[20] S. Patel, A. Sahoo, B. K. Mohanta, S. S. Panda, and D. Jena, “DAuth:
A Decentralized Web Authentication System using Ethereum based
Blockchain,” in 2019 International Conference on Vision Towards

Emerging Trends in Communication and Networking (ViTECoN), 2019,
10.1109/ViTECoN.2019.8899393.

[21] D. Moussaoui, B. Kadri, M. Feham, and B. Ammar Bensaber, “A
Distributed Blockchain Based PKI (BCPKI) architecture to enhance
privacy in VANET,” in 2nd International Workshop on Human-
Centric Smart Environments for Health and Well-being (IHSH), 2021,
10.1109/IHSH51661.2021.9378727.

[22] F. Li, Z. Liu, T. Li, H. Ju, H. Wang, and H. Zhou, “Privacy-aware PKI
model with strong forward security,” International Journal of Intelligent
Systems, vol. 37, no. 12, 2022, 10.1002/int.22283.

[23] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and
J. Mendling, “Untrusted Business Process Monitoring and Execution
Using Blockchain,” in 14th International Conference, Business Process
Management (BPM 2016). Springer, 2016, 10.1007/978-3-319-45348-
4_19.

[24] J. A. Garcia-Garcia, N. Sánchez-Gómez, D. Lizcano, M. J. Escalona, and
T. Wojdyński, “Using Blockchain to Improve Collaborative Business
Process Management: Systematic Literature Review,” IEEE Access,
vol. 8, 2020, 10.1109/ACCESS.2020.3013911.

[25] O. López-Pintado, L. Garćıa-Bañuelos, M. Dumas, I. Weber, and
A. Ponomarev, “Caterpillar: A business process execution engine on
the Ethereum blockchain,” Software: Practice and Experience, vol. 49,
no. 7, 2019, 10.1002/spe.2702.

[26] S. Curty, F. Härer, and H.-G. Fill, “Blockchain application development
using model-driven engineering and low-code platforms: A survey,”
in Enterprise, Business-Process and Information Systems Modeling,
EMMSAD 2022. Springer, 2022, 10.1007/978-3-031-07475-2_14.

[27] O. Choudhury, N. Rudolph, I. Sylla, N. Fairoza, and A. Das, “Auto-
Generation of Smart Contracts from Domain-Specific Ontologies and
Semantic Rules,” in 2018 IEEE International Conferences on Inter-
net of Things, Green Computing and Communications, Cyber, Phys-
ical and Social Computing, Smart Data, 2018, 10.1109/Cybermat-
ics_2018.2018.00183.

[28] H. Nakamura, K. Miyamoto, and M. Kudo, “Inter-organizational Busi-
ness Processes Managed by Blockchain,” in Web Information Systems
Engineering – WISE 2018. Springer, 2018, 10.1007/978-3-030-02922-
7_1.

[29] A. Mavridou and A. Laszka, “Designing Secure Ethereum Smart
Contracts: A Finite State Machine Based Approach,” in Financial
Cryptography and Data Security: 22nd International Conference, FC
2018. Springer, 2018, 10.1007/978-3-662-58387-6_28.

[30] F. Härer and H.-G. Fill, “Decentralized Attestation of Conceptual Models
Using the Ethereum Blockchain,” in 2019 IEEE 21st Conference on
Business Informatics (CBI). IEEE, 2019, 10.1109/CBI.2019.00019.

[31] ——, “Decentralized attestation and distribution of information using
blockchains and multi-protocol storage,” IEEE Access, vol. 10, 2022,
10.1109/ACCESS.2022.3150356.

[32] Amazon, “Aws step functions developer guide,” 2023, accessed on 2023-
03-12. [Online]. Available: https://docs.aws.amazon.com/step-functions/
dg/

[33] Object Management Group, “Business Process Model and Notation
(BPMN) 2.0.2,” 2014, accessed on 2023-03-12. [Online]. Available:
https://www.omg.org/spec/BPMN/2.0.2

[34] A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building smart
contracts and DApps. O’Reilly Media, 2019.

[35] Härer, “Towards interoperability of open and permissionless
blockchains: A cross-chain query language,” in IEEE International
Conference on E-business Engineering (ICEBE) 2022. IEEE, 2022,
10.1109/ICEBE55470.2022.00041.

[36] NIST, “Secure Hash Standard (SHS),” U.S. Department of Commerce,
Tech. Rep. Federal Information Processing Standard (FIPS) 180-4, 2015,
10.6028/NIST.FIPS.180-4.

[37] Ethereum Name Service (ENS), “Ens documentation,” 2023, accessed
on 2023-04-14. [Online]. Available: https://docs.ens.domains/

https://doi.org/10.1145/3508360
https://doi.org/10.1002/spe.2751
https://doi.org/10.1109/TCSS.2019.2938190
https://doi.org/10.20378/irbo-55721
https://doi.org/10.18417/emisa.15.13
https://doi.org/10.1109/ACCESS.2018.2870644
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://web.archive.org/web/20131228111141/http://vbuterin.com/ethereum.html
http://web.archive.org/web/20131228111141/http://vbuterin.com/ethereum.html
https://doi.org/10.1145/3576899
https://doi.org/10.1016/j.eswa.2020.114384
https://doi.org/10.1145/3453161
https://doi.org/10.1109/ICEBE55470.2022.00041
https://doi.org/10.1109/ACCESS.2022.3182688
https://doi.org/10.1186/s13677-021-00253-7
https://dl.acm.org/doi/10.1145/3411740.3411742
https://doi.org/10.1145/3411740.3411742
https://doi.org/10.1109/ACCESS.2023.3259068
https://doi.org/10.1109/IMCET.2018.8603050
https://doi.org/10.1109/ViTECoN.2019.8899393
https://doi.org/10.1109/IHSH51661.2021.9378727
https://doi.org/10.1002/int.22283
https://doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1109/ACCESS.2020.3013911
https://doi.org/10.1002/spe.2702
https://doi.org/10.1007/978-3-031-07475-2_14
https://doi.org/10.1109/Cybermatics_2018.2018.00183
https://doi.org/10.1109/Cybermatics_2018.2018.00183
https://doi.org/10.1007/978-3-030-02922-7_1
https://doi.org/10.1007/978-3-030-02922-7_1
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1109/CBI.2019.00019
https://doi.org/10.1109/ACCESS.2022.3150356
https://docs.aws.amazon.com/step-functions/dg/
https://docs.aws.amazon.com/step-functions/dg/
https://www.omg.org/spec/BPMN/2.0.2
https://doi.org/10.1109/ICEBE55470.2022.00041
https://doi.org/10.6028/NIST.FIPS.180-4
https://docs.ens.domains/

	Introduction
	Background and Related Work
	Proposed System Architecture
	System Structure
	Execution and Instance Tracking

	Implementation
	Executable Models on AWS
	Prototype
	Execution Control on AWS and Smart Contract Calls
	Instance Tracking and Instance Protocols

	Discussion
	Conclusion and Outlook
	References

