
SmartCML: A Visual Modeling Language to
Enhance the Comprehensibility of Smart

Contract Implementations

Simon Curty1[0000−0002−2868−9001]� and Hans-Georg Fill1[0000−0001−5076−5341]

University of Fribourg, Digitalization and Information Systems Group,
Bd de Pérolles 90, 1700 Fribourg, Switzerland
{simon.curty,hans-georg.fill}@unifr.ch

https://www.unifr.ch/inf/digits/en/

Abstract. One of the most notable capabilities of blockchain technol-
ogy, exemplified by the Ethereum platform, is the decentralized execution
of deterministic code, commonly referred to as smart contracts. This can
be employed to develop business services that capitalize on the unique
properties of blockchain technology, including the ability to maintain
immutable, transparent, and persistent records on a distributed ledger.
Nevertheless, even experts may find the process of writing smart con-
tracts challenging. In addition to cost, optimization, and security con-
cerns, it is essential to ensure that the smart contracts align with the
business case and the associated rules. To address this issue, we pro-
pose SmartCML, a domain-specific visual modeling language to draft
smart contracts, with the primary objective of facilitating the commu-
nication of the codified information among relevant stakeholders. The
modeling language has been implemented using the ADOxx metamodel-
ing platform. Smart contract models can then be transformed into fully
functional code for the Ethereum virtual machine. The application of the
modeling language is demonstrated with the help of two use cases.

Keywords: Blockchain · Smart contracts · Visual programming · Ethereum
· Model-driven engineering · Domain-specific modeling language

1 Introduction

Blockchain technology is commonly related to cryptocurrencies and finance. This
is largely due to the Bitcoin electronic cash system, conceived in 2008 [26], that
popularized this technology. The combination of a decentralized ledger and cryp-
tographic schemes enables the persistent and tamper-proof storage of transaction
records without the necessity of a central controlling party [2,13]. These intrinsic
properties of blockchains offer promising potential for the digital transformation
of businesses, facilitating the emergence of novel business cases [20,32].

The advent of program code that is executed in a decentralized, transparent,
and traceable manner has significantly enhanced the versatility and viability of

https://www.unifr.ch/inf/digits/en/

2 Curty and Fill

this technology for a multitude of business models. These so-called smart con-
tracts were popularized by the Ethereum blockchain platform [3] and have since
been adopted by many other blockchain implementations. Smart contracts allow
for the realization of business services and novel decentralized business models
that benefit from the aforementioned blockchain properties. Despite the poten-
tial for blockchain technology to disrupt existing business models and facilitate
the development of innovative business cases, the adoption of this technology
within organizational contexts is still hindered by a multitude of challenges.

Organizational barriers such as unavailability of financial and human re-
sources, regulatory involvement, and lacking knowledge of the technology in the
organization can prevent practical adoption [4]. The successful implementation
of a blockchain-based business model requires the alignment of institutional,
market, and technological factors, which can be achieved through a compre-
hensive approach that addresses the inherent complexity of these interrelated
elements [21]. In addition, the complexity and relative immaturity of the technol-
ogy’s ecosystem [15], as well as specific technical challenges [23], further impede
its adoption. While ongoing technological advancements have mitigated some
concerns, such as high energy consumption [11] and scalability issues [27], the
implementation of blockchain-based applications and business services remains a
demanding and complex endeavor. The intrinsic properties of blockchains present
a double-edged sword for smart contract development. On the one hand, the
persistent and transparent nature of the ledger, and by extension the code de-
ployed, fosters security, data privacy, and functional issues. On the other hand,
these very properties enable smart contracts in the first place. Previous research
on methods to support technical smart contract development predominantly fo-
cus on the engineering challenges related to these issues. However, interrelation
of business and technological factors in blockchain-based business cases remains
sparsely researched [10]. This includes in particular the alignment of business
services and their associated rules with smart contract implementations. To sup-
port this, we propose a modeling method to increase the comprehensibility of
smart contracts and thereby facilitate communication among stakeholders and
the alignment of the business case with the code. In particular, we present a
domain-specific visual modeling language, named SmartCML, designed for use
with Ethereum-compatible smart contracts. SmartCML is intended to serve two
distinct functions. First, it can be used to facilitate communication regarding
smart contracts for business cases. Second, it can be employed to generate code
written in the Solidity language.

The remainder of the paper is structured as follows: In Section 2 we introduce
the necessary foundations of blockchain technology and smart contracts, followed
by an overview of previous modeling approaches that relate to this work. In Sec-
tion 3, we present the extended the domain-specific modeling language, including
the requirements, metamodel and graphical notation. Section 3.4 presents a pro-
totypical implementation of the language and code generator. In Section 4, we
demonstrate the proposed language with two use cases. Finally, in Sections 5
and 6 we summarize our contribution and provide an outline for future research.

SmartCML: Visual Smart Contracts 3

2 Foundations and Related Work

The following section presents a concise overview of blockchain technologies,
with a particular focus on smart contracts. Further, it provides an analysis of
previous research on visual modeling languages for the development of smart
contracts.

2.1 Blockchain Technology

A blockchain consists of an electronic ledger that is organized in cryptograph-
ically linked blocks of digitally signed transactions between authorized parties.
This ledger is stored decentralized on a peer-to-peer network. A consensus mech-
anism defines the rules on how transactions are validated, recorded, and prop-
agated among the network nodes, thereby ensuring a consistent and valid state
of the distributed ledger [2,13]. Depending on the specific blockchain implemen-
tation, transactions may include the transfer of funds, digital assets or, more
generally, the storage of data. In some blockchain systems, transactions may
also include executable code in the form of smart contracts to be stored on the
ledger [1]. Subsequent invocation of such smart contracts results in the decen-
tralized execution of deterministic code, which can be reenacted trustfully given
the original parameters and environment. These smart contracts can be used
to build business services, as part of decentralized applications, which lever-
age core blockchain properties, such as transparency of records and shared data
access. These properties can be regarded as powerful disruptors to business mod-
els [6,20]. Blockchain-based smart contracts were popularized by the Ethereum
blockchain technology [3] and its application on the publicly available network
of the same name. Ethereum-compatible smart contracts are compiled into byte-
code for the Ethereum Virtual Machine (EVM), which is the decentralized ex-
ecution environment on the network nodes. Bytecode instructions are assigned
a cost value that serves as a measure of the complexity of the code to be exe-
cuted. In public networks, this cost is to be paid by the invoking party as part
of transaction fees. Several other blockchains use the EVM as an execution en-
vironment1, so that smart contracts written for Ethereum are portable. Smart
contracts targeting the EVM are often written in Solidity, a high-level, statically
typed programming language resembling JavaScript [30].

2.2 Visual Modeling Languages for Smart Contracts

The programming of smart contracts is subject to challenges that are not en-
countered in such a profound way in traditional development. This is partly
due to the nature of blockchain technology and its idiosyncrasies, but also due
to the intricacies of specific implementations, programming languages, and de-
velopment practices [23]. This complexity renders smart contracts vulnerable to
problems that are difficult to remedy once the contract is deployed. These include
1 e.g., Avalanche and Polygon

https://www.avax.network/
https://polygon.technology/

4 Curty and Fill

security vulnerabilities that can result in the loss of funds, or poorly optimized
code that leads unnecessary transaction costs [23]. In order to support the devel-
opment of smart contracts and to address the challenges associated with them,
several approaches have been discussed in the academic community, including
visual modeling languages [18]. In the following, we highlight selected previous
visual modeling languages for developing smart contracts and the subsequent
generation of code, that are most relevant to the approach presented here. For a
comprehensive overview of model-driven approaches to distributed application
development, we refer to a recent literature review [10].

Previous visual modeling approaches for smart contracts are based either on
an existing language, propose a domain-specific language or rely on a mixture
of the two, for example, in the form of domain-specific extensions or profiles.
An approach by Jurgelaitis et al. can be classified within the first group [22].
It utilizes UML class diagrams to model the structure of smart contracts. The
behavioral logic is then modeled with UML state charts. The UML diagrams
serve as input for the generation of executable Solidity code. The code genera-
tion of this approach is based on model transformations using the Eclipse ATL
platform, with the main goal of facilitating the implementation process. Another
approach relies on Petri nets to model smart contracts [35]. Here, the focus lies
on the prevention of security issues at design time. This is achieved by first mod-
eling contracts platform-independent and then simulating the resulting Petri net
workflows in order to detect vulnerabilities such as deadlocks. Solidity template
code can subsequently be generated from the workflows. The generated code
may then serve as secure basis for further developments.

Designing a domain-specific language promises flexibility in terms of the rep-
resentation of smart contract or blockchain platform-specific features. As such,
several domain-specific languages for smart contract development have been pro-
posed over the years. The modeling language iContractML aims to facilitate the
development of language-independent smart contracts [17]. It features a visual
notation for representing smart contracts in terms of participants, transactions,
and assets at a high abstraction level. From the high-level models, the struc-
ture of smart contract code and partial behavioral logic can be derived using
a template and transformation rule-based code generation paradigm. It allows
to target multiple languages and platforms. Tan et al. presented a tool specif-
ically targeting Solidity [29]. The modeling process relies on a combination of
form-based definition of the structure of Solidity contracts and their implemen-
tation as action graphs. These are defined visually in a notation resembling
flow-charts. From the definitions, Solidity code can be generated. A particular
focus thereby lies on the estimation and optimization of execution costs. Based
on Google’s Blockly framework, SmartBuilder is a tool for visually programming
smart contracts for the Hyperledger Fabric blockchain platform [24]. Code con-
trol structures and statements are represented as building blocks that can be
combined together in a drag-and-drop fashion to compose smart contracts. This
approach is intended to aid in learning smart contract coding.

SmartCML: Visual Smart Contracts 5

Partially relying on Blockly as well, is the language Das Contract [28], in
which Blockly is used to specify the behavior of a contract. Das Contract per-
tains to the last group of modeling approaches. For the conceptual represen-
tations of smart contracts it reverts to modified DEMO and BPMN models.
Another approach combines UML class diagrams with a domain-specific lan-
guage [19]. Thereby, language elements of the target smart contract language
are mapped to UML class diagram elements. These diagrams are further com-
plemented by models of operations in a domain-specific language. The models
are then transformed into a platform-independent target language.

The modeling language presented in this work shares similarities with existing
approaches, adopting several design decisions and ideas. However, previous work
has mostly focused on facilitating the development activity in terms of model-
based code generation or aims to make writing smart contracts more accessible
to non-experts. Our approach instead seeks to enhance the comprehensibility of
the implementation to facilitate its alignment with the business case. Therein,
a focus lies on abstractions on the algorithmic level and explicit modeling of
information access.

3 Domain-specific Language Design

The SmartCML language has been designed and developed in accordance with
the macro process as outlined by Frank and considering principles of modeling
method engineering [16,34]. The methodology comprises seven cyclical phases
(micro processes), which serve as guidelines for designing a domain-specific mod-
eling language (DSML). These phases are summarized as follows:

1. Clarification of scope and purpose: visual modeling of Ethereum-compatible
smart contracts to enhance the comprehensibility of behavioral logic.

2. Analysis of generic requirements: These requirements are, in essence, ap-
plicable to every DSML. We revert to the catalog of generic requirements
as outlined by Frank [16] and adopt them accordingly to our purposes as
outlined in Section 3.1.

3. Analysis of specific requirements, that is, requirements that apply to the
modeling artifact in particular. We will present these in Section 3.1.

4. Language specification: The metamodel will be presented in Section 3.2 in
semi-formal notation. Formal specifications may be added later, e.g. using
FDMM [14].

5. Design and documentation of graphical notation: The graphical notation of
the visual smart contract modeling language will be shown in Section 3.3.

6. Development of modeling tool : The prototypical implementation of the lan-
guage using the ADOxx metamodeling platform and the supplementary code
generation are discussed in Section 3.4.

7. Evaluation and refinement : In accordance with the macro process, the model-
ing language and its constituent parts were subject to continuous evaluation
and refinement cycles in alignment with the collected requirements. In Sec-
tion 4 we show the applicability of the language for visually modeling smart
contracts by means of two exemplary use cases.

6 Curty and Fill

3.1 Requirements

The macro process distinguishes between generic and specific requirements.
Thereby, generic requirements may relate to appropriate conceptual represen-
tation of the target domain, levels of abstraction, or pragmatics such as compre-
hensibility and ease of use. We have specified 6 generic requirements (GR1−6)
that are adopted from the catalog proposed by Frank [16]:

The visual smart contract language contains concepts that are familiar and
recognizable to smart contract experts (GR1). The visual notation serves to
differentiate between discrete concepts and is readily comprehensible to both
experts and non-experts alike (GR2). The concepts of the language allow the
modeling of smart contracts in such a way that common features of the So-
lidity language can be represented adequately (GR3). The modeling language
includes all the essential concepts so that models can convey all the necessary
information to be transformed into Solidity as the target representation (GR4).
Additional concepts can be added via an extension mechanism to accommodate
future smart contract features (GR5). In order to prevent the model from becom-
ing overloaded and to ensure the correct interpretation, the language provides
different levels of abstraction where appropriate (GR6).

We further derived six specific requirements (SR1−6), which detail the mod-
eling artifacts’ capabilities and features. The requirements have been formulated
based on features of previous approaches and use case scenarios. The latter cat-
egory encompasses tasks for which the method is considered to be applicable, as
well as concrete smart contracts that one should be able to replicate in terms
of functionality through the use of the language. The fundamental use scenario
of the language is for the visual modeling of an Ethereum-compatible smart
contract by an expert, with the objective of conveying implementation details
to other stakeholders for the purpose of aligning the implementation and the
business case. The particular specifications were as follows:

SR1 Visual smart contracts can be transformed to executable Solidity code as
target representation. The produced code is fully consistent with the be-
havioural logic and contract structure as defined in the corresponding visual
contract model. Ethereum has been selected as the target platform due to
its status as the dominant blockchain technology with smart contract ca-
pabilities in both academic and industrial contexts [10]. Moreover, select-
ing Solidity, which compiles to EVM bytecode, permits compatibility with
blockchains that rely on the EVM as an execution environment in general.

SR2 Common programming language structures and features, namely if-else
conditions, while loops, parameterized functions, function calls, arithmetic
and Boolean operations, and variable assignments can be modeled or repre-
sented equivalently. The rationale for this requirement is that the language
must be sufficiently expressive to enable the representation of general algo-
rithms. Furthermore, these concepts are intuitively known to programmers.

SR3 Concepts related to Solidity-specific language features are included, such
that these features can be modeled or derived from the model. In particu-
lar, this includes the emission of events and errors, conditional transaction

SmartCML: Visual Smart Contracts 7

guards, data location of reference types and multiple return values. The
mapping and array data structures, as well as user-defined structs shall be
supported. This selection is informed by an analysis of over 400.000 Solidity
smart contracts on their use of language features and structures. The lan-
guages have been obtained from the thousand most popular public GitHub
repositories that contain Solidity code. Subsequently, these have been parsed
and analyzed on a language grammar level.

SR4 Native solidity types, builtin functions, and custom complex composite
types, such as structs and arrays of structs, can be defined by the user.
These definitions are used in visual smart contracts and can be shared among
them. This requirement relates to GR4 and GR6 in particular. Solidity is a
statically typed language, and ideally, the required information for deriving
correct types is present within smart contract models.

SR5 Interactions that result in a change of the contract state are explicitly
denoted. Any write operation that commits data to the contract state storage
is permanently recorded in the context of a transaction on the blockchain. As
a result, such interactions are subject to transaction fees and the committed
information becomes immutable.

SR6 The notation of the modeling language is suitable for drafting visual smart
contracts with pen and paper. The rationale here is that a strict requirement
for a tool would compromise one of the core goals of the modeling language,
which is to facilitate communication, since the method could not be used as
easily in workshops, on whiteboards, and so on.

3.2 Metamodel

Based on the formulated requirements the metamodel of SmartCML was speci-
fied in seven steps (MM1-7), as shown in Figure 1. The language is inherently
flow-based and follows a similar paradigm as process languages and transition
systems. The fundamental concept is based on the representation of smart con-
tracts as a set of interfaces, with each interface accompanied by a graph of op-
erations that can be regarded as a transition system. In the following, a detailed
examination of the individual components of the metamodel will be presented.
For the sake of clarity, terms in italics relate to their respective metamodel class.

MM1 The language elements are assigned to two distinct Model Types, namely
the Definitions Map and the Visual Smart Contract. The former is com-
prised of shared definitions of types and builtins. The latter models a single
contract in terms of structure, state, behavioral logic, and communication
interfaces. A Visual Smart Contract model may reference elements of of one
or several definition maps and definition maps can be shared among models.
This segregation relates in particular to GR6.

MM2 A Definitions Map model defines Builtin Functions that are part of the
execution environment, and data types. A type is either a Struct, Mapping,
Array or Basic Type (GR4, SR4). The former three reference further types.
E.g., a mapping has a key and a value type. Elements are defined by the

8 Curty and Fill

user. This allows to accommodate for future additions and changes of the
execution environment (GR5).

Action

Operation Declaration Condition

Code Block Function Call Emission

Flow Port

Initial PortFinal Port Mid Port

True Port False Port

Flow Element

1

1

1

1

1

1

1

1

1

Boundary

Function
Interface

Interface

Proxy
Interface

1

Event

Emitter

Failure

Relation

Flow

1

from-port

1

Call

1

from-port

1

*

target-interface
0. .1

Port

Access

from-port

1

Storage *
to-storage1

Model Type

Visual Smart
Contract1

*

1
*

Definitions
Map

Definition

1*

Type
Definition

Builtin
Definition

*

references

1

*
uses

*

*

target-definition

0..1 Basic Type

Array Type

Mapping Type

Struct Type

* field-type

* key-value-type

* value-type

*

1

1

value-type

1. . *

to-element1

*

to-interface

1

Element

1

*

Call Port

Fig. 1: Metamodel of the proposed domain-specific modeling language
SmartCML. Attributes are omitted. The coloring is intended as reading aid.

SmartCML: Visual Smart Contracts 9

MM3 Boundaries define the bounds of a contract in terms of communication.
An Interface defines a scope of execution with defined input and output. The
Function Interface models a contract function, while the Proxy Interface is
used to relate other interfaces or Builtin Functions. Further, Emitters allow
for the signaling of Events and Failures during executions (GR3, SR2, SR3).

MM4 An Action represents a discrete unit of work within a flow. This may take
the form of an arithmetic or Boolean Operation, a branching Condition, the
Declaration of an instance, a Function Call or the Emission of a signal
(SR2, SR3). The Code Block element accommodates the inclusion of logic
that cannot be modeled otherwise or whose explicit representation would
be inappropriate for the targeted abstraction level (GR3, GR5, GR6). One
potential usage example is the incorporation of EVM assembly code.

MM5 Actions and Boundaries are Flow Elements, i.e., are within a flow. Each
such element has a number of Ports that define the available outgoing rela-
tions. The Flow relation allows to specify a subsequent Flow Element from
an outgoing Flow Port. Elements may differ in what ports they have. All
Actions have an Initial and a Final Port, while a Condition additionally has
a True and False Port. Each Port has a priority that defines in which order
operations are to be executed. The sequence in which ports are activated and
the action is performed is as follows: initial, action execution, mid or call,
true, false, and final. This allows to model branching logic with well-defined
sequences of actions while accommodating for some flexibility in modeling
(GR1, GR4, SR2).

MM6 The Storage class represents a state variable of a contract. To be available
within an action, state variables must explicitly be accessed with the Access
relation. Furthermore, the relation indicates the nature of the access, whether
it is a read or write operation. As a result, contract functions that access
state variables or modify them can be readily identified (GR4, SR3, SR5).

MM7 The Call relation delineates the invocation of a function from the outgo-
ing port. This may be in the form of an internal function call; in which case
the target element is a Function Interface in the same model. Alternatively,
the call may target a Proxy Interface, referencing either a Builtin Function
or some external function (GR1, GR3, SR2).

3.3 Graphical Notation

The concrete subclasses of the Element and Relation metamodel classes are
available as modeling elements in one of the model types. As such, these have a
designated graphical representation. In Table 1, a summary of the elements of
the Visual Smart Contract model type is shown. The design of the graphical no-
tation concerns mainly the requirements GR2 and SR6. The visual language is
based on simple geometric shapes where related elements share design elements.
Each Action type is denoted with a distinctly decorated circle and has an an-
notation that designates what the action represents. For example, a Condition
could have the annotation «if» or «while», depending on whether the element
translates to an if-else statement or a while loop. Boundary elements, that is,

10 Curty and Fill

Operation Condition Declaration Emission

a «- b + c

«op»
a
==
b

«if»

a_struct «- new
Struct

«create»
via

Event
a_param

«emit»

Arithmetic or
Boolean operation
with assignment

Branching control
structure: if-else,

while

Declaration of an
instance variable,
e.g., for a struct

Emission of data via
a boundary element,

e.g., an event

Function Call Code Block Function Interface Proxy Interface

ƒ function

«call»

{ • }
«code» function

» arg1:int
« 1:int

function

ƒ

Invocation of an
internal, external or

builtin function

Inclusion of
additional code such
as EVM assembly

Definition of a
parameterized

contract function

Reference to a
builtin function or an

external function

Event Failure Storage Flow Relation

AnEvent

« arg1:int

AnError

« arg1:int

state_var :
int [port]

Definition of an
event that carries

outgoing data

Definition of a failure
that when triggered
reverts a transaction

Definition of a typed
smart contract state

variable

Specifies the
subsequent action or
boundary from the

outgoing port

Access Relation
(read)

Access Relation
(write) Call Relation

[port]
state_a

[port]
write_state

[port]

Read access to a
contract Storage

element

Write access to a
contract Storage

element

Function call to a
Function Interface or

a Proxy Interface

Table 1: Graphical notation of the modeling elements that comprise a SmartCML
Visual Smart Contract model.

Interfaces and Emitters, are uniquely named as they represent a distinct defini-
tion in the smart contract, e.g., of an error. Further, Boundaries display what

SmartCML: Visual Smart Contracts 11

data is transmitted in the form of parameters and return values. Each relation
shows the port from which it is triggered. The visualization of the Access relation
is based on the access mode, and additionally denotes the variables read from,
or written to state, represented by the Storage element. The straightforward
shapes and the subtle visual design elements enable models to be drafted by
hand (SR6). The descriptive elements, such as the annotations, and the distinct
visual representation facilitates comprehensibility and the differentiation of the
concepts (GR2).

3.4 Implementation

The proposed domain-specific modeling language has been developed and imple-
mented as a prototype using the ADOxx metamodeling platform [12]. ADOxx
was selected for its maturity, acceptance in both academic and industrial con-
texts, and suitability for the prototyping of modeling methods. It has previously
been successfully employed for the implementation of modeling languages with
varying purposes [6,25]. In order to implement a metmodel for a custom modeling
language, it is necessary to extend the ADOxx metamodel in the development
toolkit and export it as a library. In order to facilitate this process, the ADOxx
metamodel provides a set of pre-defined classes, relations, and attribute types
that can be leveraged to simplify implementation. ADOxx further offers the
capability to specify model types for which specific elements and relations are
available (MM1). The Flow, Access, and Call relations (MM5−7) are realized
as relation classes. However, ADOxx does not natively support the concept of
ports. To circumvent this limitation, outgoing ports are imitated by an attribute
of the relation classes. The references to Definitions (MM2) are realized with
attributes of the Interref type, which allows to link instances of elements across
models. The linked Type Definitions are then leveraged by a type-checking sys-
tem to verify that the typed variables are being utilized in a consistent manner.
The typing system is implemented with the internal scripting language and con-
stitutes an integral part of the modeling library. The code generator, on the other
hand, is implemented as a separate Node.js application that takes ADOxx mod-
els exported as XML as input. The XML models are transformed into a syntax
tree that conforms to the Solidity grammar, and the code is then generated from
this syntax tree. The SmartCML modeling library for ADOxx and the Solidity
code generator are openly available [7].

4 Exemplary Use Cases

In accordance with the macro process, the modeling language was subject to
continuous evaluation and refinement cycles. Among other measures, the con-
tinuous analysis of use cases contributed to the refinement of the method. The
application of the modeling language for the visual design of smart contracts is
demonstrated through the analysis of two use cases.

12 Curty and Fill ����������	�����
����

�
�� ���!" �����#�$%&������'()�$$����*+,+-)./012/34�	������5.03/61
������������78���9:����������.;<=3>=1#��?�% #@���A%#������A%�����#�$%4�	������5 #@���A% #@���A%#�$%�8B������������

C��45����������������������������������7�D������� E�F��F
�.;3661F��F
�E#��$GH�AA% 2/3C��45�$.<=>I<J1#@���A% #@���A%K���LM���$$����������� ���!"7�D����A E�C��45.;3661#������A% ��N������78�����#�$%&�������OO������.PQ1#@���A% #������A% �����#�$%����R��H����78�����#�$%&�����OO����.PQ1#@���A% #������A% �����#�$%
��S�A�$�78���N�����TT�����R��H���.PQ1#@���A%2/3K���LM��S�A�$.<=>I<J1 #@���A%#@���A%

E�C��45.;3661 #@���A%#������A%

Fig. 2: Visual Smart Contract model for recording and verifying attestations of
OWL ontologies.

4.1 Ontology Attestation

The decentralized attestation of information is a common topic of discussion with
regard to the potential applications of blockchain technology. The persistence
of records ensures the immutability of previous attestations, without the need
to employ additional technological measures. This particular use case revolves
around the proposal to utilize blockchain technology and smart contracts for
the purpose of attesting to the provenance of OWL ontologies. As illustrated in
Figure 2, the visual smart contract aligns with an architectural framework for
this specific purpose that has been previously proposed [8].

This visual smart contract contains three Function Interfaces that correspond
to the contract functions attest, verify, and the helper function getId. A specific
version of an OWL ontology is identified by the ontology IRI and a version
IRI. Accordingly, attestations are mapped to ontologies using these identifiers.
The getId function constructs a key from the identifiers by calling a builtin
function concat, that concatenates strings. To record a new attestation, the attest

SmartCML: Visual Smart Contracts 13

function takes as input the identifiers, a name, and a hash of the ontology. A
unique key is obtained through an internal invocation of getId. Subsequently, it
is checked whether an attestation with the same key already exists by reading
from the state storage mapping. The mapping maps the string keys to structs
that contain the attestation information such as the address of the signer. If
the signer is already set for this key, the ontology is already attested and an
error IsAttested is emitted, and the transaction reverted as a result. Otherwise,
a new attestation struct is created and stored in the mapping. Listing 1 show the
code that is generated from this part of the model. Similarly, given an ontology
version’s identifiers, its hash, and the address of the supposed signer, it can be
verified whether this version has been attested by the given signer.

function attest(string calldata ontoIri , string calldata versionIri , string
calldata name , bytes32 hash) public {
string memory id = getId(ontoIri , versionIri);
if (store[id]. signer != address (0x0)) {

revert IsAttested ();
}
Attestation memory attestation = Attestation(msg.sender , name , block.

timestamp , hash);
store[id] = attestation;

}

Listing 1: Generated solidity code that corresponds to the attest function
interface flow.

4.2 Decentralized Auctions

In order to demonstrate the viability of proposed languages for the visual mod-
eling of more complex smart contracts, we revert to the use case of decentralized
auctions [5]. The smart contract that corresponds to the model illustrated in
Figure 3, allows the posting of auctions for items with a fixed duration. In this
context, the blockchain fulfills the function of executing the auction process and
recording of the involved bids. This enables the reenactment of the auction pro-
cess in the event of disputes without the necessity of a trusted third party [5]. It
should be noted that, in this illustration, the smart contract does not serve as a
payment channel; however, it could be adapted to include this capability.

Auctions are stored as structs in an array, represented as the auctions Storage
element. Publishing a new auction simply involves appending a new auction
struct to the array, represented by the first Declaration action and subsequent
write Access relation to the Storage element. The index of the new array element
is then returned and serves as future identifier for the auction. The visualization
allows to easily identify each access to the state storage. The distinction between
read and write access further allows to identify at a glance which functions may
alter the contract state, and thus require to be invoked in a transaction context.
That is, posting, bidding and closing an auction may change the state and is
thus recorded on the blockchain.

Furthermore, the boundary elements serve as clearly identifiable points of
data exchange that may be further processed by applications. The emitters

14 Curty and Fill

�����������	
��
�
����
���������
����������
�����������
�� ����

��!"��
�����#��!�"��
���$%&'()'*

+�,����-��,��������
�.�������������
�����	
/�0�����	
����12���3 2���3�#4���!"��
�������#���
����5����
6�#7 7$89*2:����3 2���
���3���
����5����
62:����3;<(�����������	
��$&')=&>*2:����3

?�,��������
������
����
�� �.��� �@��AA��B�
������$<C*2���
���3 ���
����2��3
D
���E	��F�, ;<(D
���E	��F�,$C(<G*2:����3

2:����3 �����
H���
����2��35.��$<C*2:����3 2���
���3 ���
����2��3 ����
�
I$89*2
���3 2���
���32��35.����#������

;<(+�,����-��,����7���5������7$'J<)*2:����32���
���3

2��35.�������#�7���5������7

;<(?�,7:����7$&')=&>*2:����32:����3
2���3

;<(?�,7
���7$&')=&>* 2:����32:����3
�/K-�
��������
�� �.��� �@����#���
����2��35�
�
�LL��������$89* 2���
���3 ���
����2��3

2���
���3 ���
����2��3M��/N�

�
O$%(GG* 2:����3 ;<(�/K-�
�@��$&')=&>*2:����3 2:����3

M��/K-�
$%(GG* 2:����32���P����3 ��B�
��������#���
����2��35������QR�7���5������7$89* 2:����3

�S	/���������

��������AA�����$<C*2���
���3

���
����2��3
����
�
I$89*

;<(D
���E	��F�,$C(<G* 2:����3 2
���32:����3 2���
���3 2��35�
�
���#�7:����7
;<(TS	/�,�������
����2��35.�����$'J<)*2:����3 TS	/�,��������
�!�������������2:����32���
���3���
����2��3

�/N�

�
O��������
�� �.��� �����#���
����2��35�
��
�U���
����2��35������$89*
������#�����#7.���V5
����
��@7$89* ���������#�
�����47W7$89*2:����3 2:����3 ;<(�/N�

�
O�@��$&')=&>*2:����3 2:����3
2���
���3

����������#7���5������7�RR���
����2��35������$89* M��/N�

�
O$%(GG*2:����3 2���
���3 �������#��������RR�7:����7$89*2:����3 2:����32:����3
Fig. 3: Visual Smart Contract model for decentralized, timed auctions.

Unauthorized, BidAccepted, Closed are shared across flows. That is, these el-
ements, same as the Storage are defined on the contract scope. This is indicated
by the black coloring of these elements.

SmartCML: Visual Smart Contracts 15

5 Discussion

Domain-specific languages are particularly well-suited for addressing the com-
plexities inherent to the adoption of blockchain technology. This is due to the
fact that intrinsic properties can be captured in great detail within the context of
such languages. Thus, several modeling methods have been proposed that aim to
address the many inherent challenges. Common objectives of modeling methods
are related to security concerns [31] or model-driven development [9,33], while
methods to support the alignment of blockchain technology and business aspects
remains sparsely researched [10]. This work aims to leverage the advantages of
model-driven engineering methods for the development of smart contracts, while
providing a visualization of the implementation that facilitates communication
of the behavioral logic. As such, the presented SmartCML may serve as a tool to
discuss smart contract implementations among stakeholders. To achieve this, the
modeling language has been rigorously designed following the macro process [16].
The demonstration underlines the languages applicability for visually modeling
smart contract that can be transformed into executable Solidity code, without
the need of any further manual programming (GR1,3,4, SR1−4). An emphasis
in the language’s design has been placed on the explicit modeling of smart con-
tract states and which interaction cause a state change (SR5). The immediate
practical benefit is the straightforward identification of interaction in a transac-
tion context and all consequences thereof. Moreover, this offers the opportunity
to further link business models with smart contract implementations regarding
information spaces, e.g., for ensuring fulfillment of regulatory requirements. The
graphical notation is based on simple shapes, which allows for drafting models
by hand (SR6), thus facilitating use on whiteboards.

6 Conclusion and Future Work

In this paper we presented SmartCML, a domain-specific modeling language
for the visual programming of Ethereum-compatible smart contracts. A focus
has been put on a simple graphical notation that aims to facilitate the compre-
hensibility of the implementation and explicit representation of state changing
interactions. The visual smart contract model can be transformed to readily
deployable and executable smart contract code. Opportunities for future work
include the integration with business modeling approaches, e.g., e3value, model-
based formal verification methods, and the specification of modeling procedures.
Further evaluations, for example in the form of expert interviews or ontologi-
cal analysis, are required to validate the language beyond the initial feasibility
demonstration.

Acknowledgments. This work was supported by the Swiss National Science Founda-
tion project Domain-Specific Conceptual Modeling for Distributed Ledger Technologies
[196889].

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

16 Curty and Fill

References

1. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts
and Dapps. O’reilly Media (2018)

2. Banafa, A.: Introduction to Blockchain Technology. River Publishers, New York
(Jul 2023). https://doi.org/10.1201/9781003426264

3. Buterin, V.: A Next-Generation Smart Contract and Decentralized Application
Platform (2013), https://ethereum.org/en/whitepaper/

4. Clohessy, T., Acton, T., Rogers, N.: Blockchain Adoption: Technological, Organ-
isational and Environmental Considerations. In: Treiblmaier, H., Beck, R. (eds.)
Business Transformation through Blockchain, pp. 47–76. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-98911-2_2

5. Curty, S., Fill, H.G.: Exploring the Systematic Design of Blockchain-based Ap-
plications Using Integrated Modeling Standards. In: Bork, D., Barat, S., Asprion,
P.M., Marcelletti, A., Morichetta, A., Schneider, B., Kulkarni, V., Breu, R., Zech, P.
(eds.) Proceedings of the PoEM 2022 Workshops and Models at Work Co-Located
with Practice of Enterprise Modelling 2022, London, United Kingdom, November
23-25, 2022. CEUR Workshop Proceedings, vol. 3298. CEUR-WS.org (2022)

6. Curty, S., Fill, H.G.: A Domain-Specific e3value Extension for Analyzing
Blockchain-Based Value Networks. In: Almeida, J.P.A., Kaczmarek-Heß, M.,
Koschmider, A., Proper, H.A. (eds.) The Practice of Enterprise Modeling, vol. 497,
pp. 74–90. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/
978-3-031-48583-1_5

7. Curty, S., Fill, H.G.: SmartCML ADOxx Application Library and Code Generator
(PoEM 2024) (Oct 2024). https://doi.org/10.5281/zenodo.13899102

8. Curty, S., Fill, H.G., Gonçalves, R.S., Musen, M.A.: An Architecture for Attest-
ing to the Provenance of Ontologies Using Blockchain Technologies. In: Shishkov,
B. (ed.) Business Modeling and Software Design. pp. 182–199. Lecture Notes in
Business Information Processing, Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-031-11510-3_11

9. Curty, S., Härer, F., Fill, H.G.: Blockchain application development using model-
driven engineering and low-code platforms: A survey. In: Enterprise, Business-
Process and Information Systems Modeling. pp. 205–220. Springer International
Publishing, Cham (2022)

10. Curty, S., Härer, F., Fill, H.G.: Design of blockchain-based applications using
model-driven engineering and low-code/no-code platforms: A structured litera-
ture review. Software and Systems Modeling (Jun 2023). https://doi.org/10.1007/
s10270-023-01109-1

11. Fernando, Y., Saravannan, R.: Blockchain Technology: Energy Efficiency and Eth-
ical Compliance. Journal of Governance and Integrity 4(2), 88–95 (Mar 2021).
https://doi.org/10.15282/jgi.4.2.2021.5872

12. Fill, H.G., Karagiannis, D.: On the Conceptualisation of Modelling Methods Using
the ADOxx Meta Modelling Platform. Enterprise Modelling and Information Sys-
tems Architectures (EMISAJ) 8(1), 4–25 (2013). https://doi.org/10.18417/emisa.
8.1.1

13. Fill, H.G., Meier, A. (eds.): Blockchain: Grundlagen, Anwendungsszenarien und
Nutzungspotenziale. Edition HMD, Springer Fachmedien, Wiesbaden (2020).
https://doi.org/10.1007/978-3-658-28006-2

14. Fill, H., Redmond, T., Karagiannis, D.: Formalizing meta models with FDMM: the
adoxx case. In: Enterprise Information Systems - 14th International Conference,

https://doi.org/10.1201/9781003426264
https://doi.org/10.1201/9781003426264
https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/978-3-319-98911-2_2
https://doi.org/10.1007/978-3-319-98911-2_2
https://doi.org/10.1007/978-3-031-48583-1_5
https://doi.org/10.1007/978-3-031-48583-1_5
https://doi.org/10.1007/978-3-031-48583-1_5
https://doi.org/10.1007/978-3-031-48583-1_5
https://doi.org/10.5281/zenodo.13899102
https://doi.org/10.5281/zenodo.13899102
https://doi.org/10.1007/978-3-031-11510-3_11
https://doi.org/10.1007/978-3-031-11510-3_11
https://doi.org/10.1007/s10270-023-01109-1
https://doi.org/10.1007/s10270-023-01109-1
https://doi.org/10.1007/s10270-023-01109-1
https://doi.org/10.1007/s10270-023-01109-1
https://doi.org/10.15282/jgi.4.2.2021.5872
https://doi.org/10.15282/jgi.4.2.2021.5872
https://doi.org/10.18417/emisa.8.1.1
https://doi.org/10.18417/emisa.8.1.1
https://doi.org/10.18417/emisa.8.1.1
https://doi.org/10.18417/emisa.8.1.1
https://doi.org/10.1007/978-3-658-28006-2
https://doi.org/10.1007/978-3-658-28006-2

SmartCML: Visual Smart Contracts 17

ICEIS 2012, Wroclaw, Poland, June 28 - July 1, 2012, Revised Selected Papers.
Lecture Notes in Business Information Processing, vol. 141, pp. 429–451. Springer
(2012). https://doi.org/10.1007/978-3-642-40654-6_26

15. Flovik, S., Moudnib, R.A., Vassilakopoulou, P.: Determinants of Blockchain Tech-
nology Introduction in Organizations: An Empirical Study among Experienced
Practitioners. Procedia Computer Science 181, 664–670 (2021). https://doi.org/
10.1016/j.procs.2021.01.216

16. Frank, U.: Domain-Specific Modeling Languages: Requirements Analysis and
Design Guidelines. In: Domain Engineering: Product Lines, Conceptual Mod-
els, and Languages, pp. 133–157. Springer (May 2013). https://doi.org/10.1007/
978-3-642-36654-3_6

17. Hamdaqa, M., Met, L.A.P., Qasse, I.A.: iContractML 2.0: A domain-specific lan-
guage for modeling and deploying smart contracts onto multiple blockchain plat-
forms. Information and Software Technology 144, 106762 (2022). https://doi.org/
10.1016/j.infsof.2021.106762

18. Härer, F., Fill, H.G.: A Comparison of Approaches for Visualizing Blockchains and
Smart Contracts. Jusletter IT Weblaw, ISSN 1664-848X 21 February 2019 (Feb
2019). https://doi.org/10.5281/zenodo.2585575

19. Heckel, R., Erum, Z., Rahmi, N., Pul, A.: Visual Smart Contracts for DAML. In:
Graph Transformation. vol. 13349, pp. 137–154. Springer International Publishing,
Cham (2022). https://doi.org/10.1007/978-3-031-09843-7_8

20. Iansiti, M., Lakhani, K.R.: The Truth About Blockchain. Harvard business review
95(1), 118–127 (2017)

21. Janssen, M., Weerakkody, V., Ismagilova, E., Sivarajah, U., Irani, Z.: A framework
for analysing blockchain technology adoption: Integrating institutional, market and
technical factors. International Journal of Information Management 50, 302–309
(Feb 2020). https://doi.org/10.1016/j.ijinfomgt.2019.08.012

22. Jurgelaitis, M., Ceponiene, L., Butkiene, R.: Solidity code generation from UML
state machines in model-driven smart contract development. IEEE Access 10,
33465–33481 (2022). https://doi.org/10.1109/ACCESS.2022.3162227

23. Kannengiesser, N., Lins, S., Sander, C., Winter, K., Frey, H., Sunyaev, A.: Chal-
lenges and common solutions in smart contract development. IEEE Transactions
on Software Engineering (2021). https://doi.org/10.1109/TSE.2021.3116808

24. Merlec, M.M., Lee, Y.K., In, H.P.: SmartBuilder: A block-based visual program-
ming framework for smart contract development. In: 2021 IEEE International Con-
ference on Blockchain, Blockchain 2021, Melbourne, Australia, December 6-8, 2021.
pp. 90–94. IEEE (2021). https://doi.org/10.1109/Blockchain53845.2021.00023

25. Muff, F., Fill, H.G.: A Domain-Specific Visual Modeling Language for Augmented
Reality Applications Using WebXR. In: Almeida, J.P.A., Borbinha, J., Guizzardi,
G., Link, S., Zdravkovic, J. (eds.) Conceptual Modeling. pp. 334–353. Springer
Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-47262-6_18

26. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009), https:
//web.archive.org/web/20140320135003/https://bitcoin.org/bitcoin.pdf, [last ac-
cessed: 2024-07-24]

27. Nguyen, C.T., Hoang, D.T., Nguyen, D.N., Niyato, D., Nguyen, H.T., Dutkiewicz,
E.: Proof-of-Stake Consensus Mechanisms for Future Blockchain Networks: Fun-
damentals, Applications and Opportunities. IEEE Access 7, 85727–85745 (2019).
https://doi.org/10.1109/ACCESS.2019.2925010

28. Skotnica, M., Pergl, R.: Das contract - A visual domain specific language for
modeling blockchain smart contracts. In: Advances in Enterprise Engineering

https://doi.org/10.1007/978-3-642-40654-6_26
https://doi.org/10.1007/978-3-642-40654-6_26
https://doi.org/10.1016/j.procs.2021.01.216
https://doi.org/10.1016/j.procs.2021.01.216
https://doi.org/10.1016/j.procs.2021.01.216
https://doi.org/10.1016/j.procs.2021.01.216
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1016/j.infsof.2021.106762
https://doi.org/10.1016/j.infsof.2021.106762
https://doi.org/10.1016/j.infsof.2021.106762
https://doi.org/10.1016/j.infsof.2021.106762
https://doi.org/10.5281/zenodo.2585575
https://doi.org/10.5281/zenodo.2585575
https://doi.org/10.1007/978-3-031-09843-7_8
https://doi.org/10.1007/978-3-031-09843-7_8
https://doi.org/10.1016/j.ijinfomgt.2019.08.012
https://doi.org/10.1016/j.ijinfomgt.2019.08.012
https://doi.org/10.1109/ACCESS.2022.3162227
https://doi.org/10.1109/ACCESS.2022.3162227
https://doi.org/10.1109/TSE.2021.3116808
https://doi.org/10.1109/TSE.2021.3116808
https://doi.org/10.1109/Blockchain53845.2021.00023
https://doi.org/10.1109/Blockchain53845.2021.00023
https://doi.org/10.1007/978-3-031-47262-6_18
https://doi.org/10.1007/978-3-031-47262-6_18
https://web.archive.org/web/20140320135003/https://bitcoin.org/bitcoin.pdf
https://web.archive.org/web/20140320135003/https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/ACCESS.2019.2925010
https://doi.org/10.1109/ACCESS.2019.2925010

18 Curty and Fill

XIII - 9th Enterprise Engineering Working Conference, EEWC 2019, Lisbon,
Portugal, May 20-24, 2019, Revised Papers. Lecture Notes in Business Informa-
tion Processing, vol. 374, pp. 149–166. Springer (2019). https://doi.org/10.1007/
978-3-030-37933-9_10

29. Tan, S., Bhowmick, S.S., Chua, H.E., Xiao, X.: LATTE: Visual construction of
smart contracts. In: Proceedings of the 2020 International Conference on Manage-
ment of Data, SIGMOD Conference 2020, Online Conference [Portland, OR, USA],
June 14-19, 2020. pp. 2713–2716. ACM (2020). https://doi.org/10.1145/3318464.
3384687

30. The Solidity Team: Solidity — Solidity 0.8.26 documentation.
https://docs.soliditylang.org/en/v0.8.26/, [last accessed: 2024-07-24]

31. Tolmach, P., Li, Y., Lin, S., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification. ACM Comput. Surv. 54(7), 148:1–148:38 (2022).
https://doi.org/10.1145/3464421

32. Treiblmaier, H., Clohessy, T. (eds.): Blockchain and Distributed Ledger Technol-
ogy Use Cases: Applications and Lessons Learned. Progress in IS, Springer Inter-
national Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-44337-5

33. Varela-Vaca, Á.J., Quintero, A.M.R.: Smart contract languages: A multivocal map-
ping study. ACM Comput. Surv. 54(1), 3:1–3:38 (2021). https://doi.org/10.1145/
3423166

34. Visic, N., Fill, H., Buchmann, R.A., Karagiannis, D.: A domain-specific language
for modeling method definition: From requirements to grammar. In: IEEE RCIS
2015. pp. 286–297. IEEE (2015). https://doi.org/10.1109/RCIS.2015.7128889

35. Zupan, N., Kasinathan, P., Cuellar, J., Sauer, M.: Secure Smart Contract
Generation Based on Petri Nets. In: Blockchain Technology for Industry
4.0, pp. 73–98. Springer Singapore, Singapore (2020). https://doi.org/10.1007/
978-981-15-1137-0_4

https://doi.org/10.1007/978-3-030-37933-9_10
https://doi.org/10.1007/978-3-030-37933-9_10
https://doi.org/10.1007/978-3-030-37933-9_10
https://doi.org/10.1007/978-3-030-37933-9_10
https://doi.org/10.1145/3318464.3384687
https://doi.org/10.1145/3318464.3384687
https://doi.org/10.1145/3318464.3384687
https://doi.org/10.1145/3318464.3384687
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3464421
https://doi.org/10.1007/978-3-030-44337-5
https://doi.org/10.1007/978-3-030-44337-5
https://doi.org/10.1145/3423166
https://doi.org/10.1145/3423166
https://doi.org/10.1145/3423166
https://doi.org/10.1145/3423166
https://doi.org/10.1109/RCIS.2015.7128889
https://doi.org/10.1109/RCIS.2015.7128889
https://doi.org/10.1007/978-981-15-1137-0_4
https://doi.org/10.1007/978-981-15-1137-0_4
https://doi.org/10.1007/978-981-15-1137-0_4
https://doi.org/10.1007/978-981-15-1137-0_4

	SmartCML: A Visual Modeling Language to Enhance the Comprehensibility of Smart Contract Implementations

