
Graph Databases vs. Relational
Databases for Social Web Applications

A Systematic Evaluation

M A S T E R T H E S I S

CHRISTIAN FR IE S

August 2023

The s i s s upe rv is ors :

Prof. Dr. Jacques PASQUIER–ROCHA

Software Engineering Group

Software Engineering Group

Department of Informatics

University of Fr ibourg

(Switzerland)

ii

“The difference between theory and practice is that in theory, there is no
difference between theory and practice.”

- Richard Moore

Abstract

iii

Abstract

Since the advent of Web 2.0, the internet is no longer just a place to consume information. It

has become a place to actively participate, to interact with other people. Large social media

platforms have emerged with up to 2.3 billion users. The spread of such platforms has changed

the requirements for the technologies. It has been realised that it is not only the discrete

information that is valuable, but that the relationships between the information are even more

valuable. From this realisation, the graph databases as we know them today have gained

popularity.

In this thesis, a systematic evaluation of a graph database and a relational database is conducted.

Both databases are evaluated based on well-known use cases in the context of social web

applications. The two databases are opposed and compared based on a defined set of criteria.

Keywords: Graph Database, Relational Database, MySQL, Neo4j, SQL, Cypher

Preamble

iv

Preamble

Acknowledgements

First, I would like to express my deepest appreciation to Prof. Dr. Jacques Pasquier-Rocha of

the Software Engineering Group at the University of Fribourg. His invaluable expertise and

feedback have successfully guided me through this thesis. The interesting discussions have

always inspired me to include additional perspectives.

Furthermore, I would like to extend my sincere thanks to my employer, LST AG, for supporting

me in writing this thesis by providing me with the necessary time and flexibility.

Last but not least, I’d like to thank my family and friends. Their believe in me has kept my

spirits and motivation high throughout this process.

Notations and Conventions

▪ Figures, tables, and listings

- Figures, tables, and listings are numbered on a per chapter basis. As an example, the

second figure in chapter 3 will be noted as Figure 3.2.

▪ Formatting

- To put emphasis on one or several words, they’re formatted like this.

- URLs are formatted https://www.like.this

- Inline code is formatted likeThis();

- Code blocks are formatted as follows:

1 class Thesis {

2 public function __construct() {}

3 }

Table of Contents

v

Table of Contents

1 Introduction 1

1.1 Motivation and Goals .. 1

1.2 Use Cases ... 2

1.2.1 List of Friends .. 2

1.2.2 Friends Recommendation Based on Mutual Friends ... 2

1.2.3 Friends Recommendation Based on Several Criteria ... 2

1.2.4 Auto-Suggest for Search Field ... 3

1.3 Organization .. 3

2 Databases 4

2.1 Types of Databases .. 4

2.2 Selection Criteria ... 5

2.3 MySQL – Relational Database .. 5

2.3.1 Fundamentals ... 6

2.3.2 Structured Query Language ... 6

2.4 Neo4j – Graph Database .. 7

2.4.1 Fundamentals ... 7

2.4.2 Cypher .. 7

3 Database Implementation 9

3.1 Creating a Test Dataset .. 9

3.2 Setup of Database Servers ... 11

3.2.1 MySQL Server Setup ... 11

3.2.2 Neo4j Server Setup... 15

3.3 Import Test Data .. 16

3.3.1 Import Data into MySQL Database ... 16

3.3.2 Import Data into Neo4j Database ... 17

3.4 Optimizing Schema and Data .. 19

3.5 Queries for the Use Cases .. 21

3.6 Validating the Queries ... 27

3.7 Automation .. 28

4 Evaluation 29

4.1 Evaluation Criteria ... 29

4.1.1 Performance ... 29

Table of Contents

vi

4.1.2 Number of Clauses ... 30

4.1.3 Developer Convenience ... 30

4.2 Evaluation .. 30

4.3 Result ... 31

4.3.1 Result of Performance Evaluation.. 31

4.3.2 Result of Number of Clauses Evaluation ... 33

4.3.3 Result of Developer Convenience Evaluation ... 33

4.4 Discussion .. 33

5 Prototype 35

5.1 Architecture ... 35

5.2 Technology Stack .. 36

5.3 Implementation .. 36

5.3.1 REST API ... 36

5.3.2 Frontend Application.. 38

5.4 User Interface ... 38

6 Conclusion and Future Work 42

6.1 Conclusion ... 42

6.2 Future Work ... 42

A Source Code 44

References 45

Referenced Web Resources 46

List of Figures

vii

List of Figures

Figure 2.1: MySQL tables for relationships between actors and movies 6

Figure 2.2: Cyphers ASCII-art type of syntax [3] .. 8

Figure 3.1: MySQL Workbench listing person records .. 17

Figure 3.2: Neo4j Desktop presenting a graph with nodes and relationships 19

Figure 3.3: Dataset for query validation .. 28

Figure 4.1: Query performance comparison for list of friends .. 31

Figure 4.2: Query performance comparison for friends recommendation #1 31

Figure 4.3: Query performance comparison for friends recommendation #2 32

Figure 4.4: Query performance comparison for auto-suggest ... 32

Figure 4.5: Result of number of clauses evaluation ... 33

Figure 5.1: The architecture of the prototype .. 35

Figure 5.2: The left side of the toolbar ... 38

Figure 5.3: The right side of the toolbar .. 38

Figure 5.4: The view of use case 3 ... 39

Figure 5.5: The view of a person .. 40

Figure 5.6: The view of a topic ... 41

List of Tables

viii

List of Tables

Table 4.1: Overview of users selected for evaluation .. 30

Table 4.2: Clauses that were counted during the evaluation ... 31

Table 4.3: Result of developer convenience evaluation ... 33

Table 5.1: Overview of REST API endpoints ... 37

List of Source Code

ix

List of Source Code

Code 3.1: Configuration options for the script generating the dataset 10

Code 3.2: Create a user and define permissions .. 12

Code 3.3: Create a database .. 12

Code 3.4: Create a table for persons ... 12

Code 3.5: Create a table for topics .. 13

Code 3.6: Create a table for friendships .. 13

Code 3.7: Create a table for likes .. 13

Code 3.8: Create indexes for columns used for lookup.. 14

Code 3.9: Create foreign keys .. 14

Code 3.10: Create indexes and constraints .. 15

Code 3.11: Query to import CSV data into a MySQL table ... 16

Code 3.12: Query to import CSV data into a Neo4j database as nodes 18

Code 3.13: Query to import CSV data into a Neo4j database as relationships 18

Code 3.14: SQL queries to normalize the column country .. 20

Code 3.15: SQL query to insert bidirectional friendship records .. 20

Code 3.16: SQL query to insert bidirectional friendship records .. 21

Code 3.17: SQL query to optimize the table storage.. 21

Code 3.18: SQL query for use case 1 ... 21

Code 3.19: Cypher query for use case 1 .. 21

Code 3.20: SQL query for use case 2 ... 22

Code 3.21: Cypher query for use case 2 .. 23

Code 3.22: SQL query for use case 3 ... 24

Code 3.23: Cypher query for use case 3 .. 25

Code 3.24: SQL query for use case 4 ... 26

Code 3.25: Cypher query for use case 4 .. 27

Code 5.1: Controller method for use case 1... 37

Code 5.2: HTTP interceptor to keep track of performance.. 38

1 Introduction Motivation and Goals

1

 1

Introduction

1.1 Motivation and Goals 1

1.2 Use Cases 2

1.2.1 List of Friends .. 2

1.2.2 Friends Recommendation Based on Mutual Friends ... 2

1.2.3 Friends Recommendation Based on Several Criteria .. 2

1.2.4 Auto-Suggest for Search Field ... 3

1.3 Organization 3

1.1 Motivation and Goals

Since the advent of Web 2.0, the internet is no longer just a place to consume information. It

has become a place to actively participate, to interact with other people, to share information

and to collaborate. Platforms such as Facebook have more than 2 billion users [Est23].

Not only have large social media platforms emerged from this, but various new standards have

also developed. For example, a company’s static intranet has become an internal

communication platform, the fan platform enables direct interaction with the stars, and the

residents of a housing estate can organise themselves via a platform to support each other when

sugar is missing or a caregiver needs to be found.

With these new habits, the demands on technologies have changed. It has been realised that it

is not only the discrete information that is valuable, but that the relationships between the

information are even more valuable. From this realisation, the graph databases as we know

them today have become popular [Ian13].

The goal of this thesis is to evaluate a graph database and a relational database based on well-

known use cases in the context of social web applications. The two databases are contrasted

and compared based on a defined set of criteria. A prototype is to be developed that

demonstrates the use cases in action.

1 Introduction Use Cases

2

1.2 Use Cases

When it comes to social web applications, they all have common use cases they need to master.

Users of such applications want to manage their profiles, connect with other users, share

information about themselves and subscribe to information shared by others.

For this thesis, four common use cases were identified and selected as basis for the evaluation

of the database systems and for the prototype.

1.2.1 List of Friends

The simplest use case is about providing a list of friends. As a user, I want to see a list of people

I am friends with. Several platforms implement different mechanisms for this use case,

sometimes a user can follow another user without the other user’s approval, sometimes the other

user must approve the request. Also, the platforms differentiate between unidirectional and

bidirectional connection. On e.g. Twitter, a user A can follow a user B, but this does not

automatically result in user B following user A as well. This is called a unidirectional

connection. On Facebook on the other hand, friendships are modelled as bidirectional

connection. If user A sends a friendship request to user B and user B approves the request, both

users are friends of each other. This is a bidirectional connection.

For this thesis, the concept of a bidirectional connection is used.

1.2.2 Friends Recommendation Based on Mutual Friends

A common use case for social web applications is the recommendation of friends or people one

might know. Getting in touch with people is the number one reason to use social media apps.

The more people a user is linked to, the more time he spends on the platform. For the operator,

this makes it possible to display more advertising, which is often an important source of

revenue. In this sense, the recommendation of friends is an important tool.

This use case assumes that people, that have mutual friends, are likely to know each other as

well.

1.2.3 Friends Recommendation Based on Several Criteria

The goal of this use case is the same as in the previous use case, recommending possible friends.

However, this use case is based on a different assumption: Not only people who have mutual

friends should be recommended, but also people who have common interests or live in the same

country.

In order to be able to better tune the results, the individual criteria need to be rated. The fact

that someone has common interest should be weighted higher than the fact that someone lives

in the same country.

1 Introduction Organization

3

1.2.4 Auto-Suggest for Search Field

A search field is a very common concept to allow users of a platform to navigate and find

content. If a few letters are entered into the search field, possible results are suggested

automatically while typing. The results contain both persons and topics that the user is already

connected to, either as friend or as like, and persons and topics the user is not yet connected to.

The results must be sorted in an order that takes these factors into account.

1.3 Organization

This thesis is structured in six chapters. The first chapter presents the goals and the motivation

for this thesis and explains the relevant use cases. The second chapter provides an overview of

types of databases and highlights two database management systems in detail. In chapter 3, the

setup of the DBMSs and the development of the queries is explained. The evaluation process,

the results and the discussion are presented in chapter 4. Chapter 5 introduces the prototype

implemented as part of this thesis and explains the architecture and the technology stack used.

Finally, chapter six provides a conclusion and future work.

2 Databases Types of Databases

4

 2

Databases

2.1 Types of Databases 4

2.2 Selection Criteria 5

2.3 MySQL – Relational Database 5

2.3.1 Fundamentals ... 6

2.3.2 Structured Query Language ... 6

2.4 Neo4j – Graph Database 7

2.4.1 Fundamentals ... 7

2.4.2 Cypher .. 7

A database is an organized collection of information which can be electronically searched and

sorted according to its various categories [Ken89]. To interact with a database, a database

management system is used.

2.1 Types of Databases

Since the invention of the first database in the mid-1960s, countless database management

systems have been developed. One of the first types of databases was the relational database. It

introduced data records and relationships between those in a space-efficient way. IBM in the

1970s released System R, a relational database which was the first to use the Structured Query

Language (SQL) [Don81].

In the 1980s, object-oriented database management systems emerged. They support the

modelling and creation of data as objects and integrate seamlessly with object-oriented

programming languages.

In 1998, the term NoSQL was first used for a relational database that did not use SQL but

another query language. NoSQL databases are more flexible than traditional databases because

they don't follow a rigid schema but instead have more flexible structures to accommodate their

datatypes.

Over time, four major types of NoSQL databases emerged:

▪ Document databases store data in documents similar to JSON objects. Each document

contains pairs of fields and values.

2 Databases Selection Criteria

5

▪ Key-value databases are a simpler type of database where each item contains keys and

values.

▪ Column-family databases or wide-column databases store data in tables, rows, and dynamic

columns.

▪ Graph databases store data in nodes and edges. Nodes typically store objects or things, while

edges store information about the relationships between the nodes.

In recent years, graph databases have become highly popular, mainly thanks to the fact that

relationships are first-class citizens. Traversing relationships is very fast because relationships

are not calculated at query times but are persisted in the database. Graph databases have shown

to be good solutions for use cases such as recommendation engines, activity analytics, and

social networking.

In this thesis, the focus is on graph databases and relational databases. For each of the two

database types, a database system is selected and the two are compared based on the use cases

presented in section 1.2.

2.2 Selection Criteria

In order to be able to make a fair comparison, some criteria were defined that are decisive for

the choice of the database systems.

The first criterion relates to the relevance of the database systems. The systems should have

been available for several years and have proven themselves in productive use in well-known

products. A continuous development of the systems should be guaranteed.

The second criterion refers to the popularity. Database systems should be used which enjoy

great popularity and which have an active community. The DB-Engines Knowledge Base of

Rational and NoSQL Database Management Systems [1] provides a ranking of database

systems based on the number of mentions in search results, Google Trends, and the number of

related questions on platforms such as Stack Overflow and DBA Stack Exchange.

The third criterion refers to the availability. The systems should be available as open-source

software. This helps ensuring reliability and transparency.

The fourth criterion refers to the availability of resources. Systems should be used which are

well documented and offer a vibrant support community.

Based on these four criteria, the decision was made in favour of MySQL as a relational database

and Neo4j as a graph database. Both have proven themselves for several years in platforms such

as Facebook or Adobe Behance and enjoy great popularity.

2.3 MySQL – Relational Database

MySQL is an open-source relational database management system first released in 1995 under

the GNU General Public License. It is written in C and C++ and works on a wide range of

operating systems.

According to DB-Engines, MySQL is the most popular open-source database management

system. Platforms such as Facebook or Twitter were built based on MySQL and still make

heavy use of it.

2 Databases MySQL – Relational Database

6

2.3.1 Fundamentals

MySQL organizes data in databases and tables. Each table requires a schema defining the

columns available to that table and the datatypes to be used for the columns. MySQL knows

datatypes such as text, numbers, booleans, dates and more.

Adding a new row to a table expects values for all columns to be defined, otherwise a default

value is used if defined in the schema. Adding values for columns that are not defined in the

schema is not possible.

Each row in a table can be uniquely identified by the primary key. The key can be an

automatically incrementing number or a unique value provided when adding the row.

In MySQL, relationships between records are modelled based on the concept of foreign keys.

It allows to create cross-references between tables by defining which column in the original

table refers to which column in the target table. MySQL will make sure, that the values inserted

into the column on the original table exist in the referenced column on the referenced table.

This is called referential integrity.

If multiple rows in one table can refer to multiple rows in another table, an intermediate table

needs to be introduced. For example, several actors act in a movie and an actor acts in several

movies. These relationships can't be stored in the table actor or movie, an intermediate table

holding these relationships is needed.

Figure 2.1: MySQL tables for relationships between actors and movies

Indexes can be used to speed up the process of finding rows with specific values. Without an

index, MySQL must read through the entire table to find the relevant rows, which gets slower

the larger the table gets. With the help of an index, the position of the records in the data file

can quickly be determined.

2.3.2 Structured Query Language

The structured query language SQL is a language to operate databases such as MySQL. It has

been introduced in the 1970s and became an ANSI standard in 1986. It’s used by most relational

database management systems but a lot of them don’t fully adhere to the standard.

SQL uses the relational model described by Edgar F. Codd. According to that model, all data

is represented in terms of tuples and grouped into relations [Edg70].

SQL queries use a set of clauses to interact with the database. A SELECT clause can be used to

select columns whose values should be returned. The FROM clause defines, what table to read

from. The WHERE clause can be used to define conditions that need to be fulfilled. Ordering can

be achieved using the ORDER BY clause and limiting can be achieved with LIMIT.

2 Databases Neo4j – Graph Database

7

A central aspect to SQL is the JOIN clause. It is used to combine rows from two or more tables

based on a common field between them. MySQL requires joins to traverse relationships

between entities. Several different types of joins exist such as INNER JOIN which allows

conditions that specify how tables are joined, or CROSS JOIN which generates a cartesian

product. These joins are executed during runtime.

For more complex queries there are further possibilities, e.g. to group and aggregate rows.

2.4 Neo4j – Graph Database

Neo4j is an open-source graph database management system first released in 2010 under the

GPL v3 license. It is written in Java and works on a great number of operating systems.

According to DB-Engines, Neo4j is the most popular graph database management system. It is

used by platforms such as Adobe Behance or eBay.

2.4.1 Fundamentals

Neo4j uses a property graph database model, where a node represents an entity, an edge

represents a relationship between entities, and a property represents a specific feature of an

entity or relationship [Ren18].

Nodes can have zero or more labels to classify what kind of nodes they are. For example, a

node representing a person could be labelled with the label Person. With that in place, Neo4j

can perform operations only on person nodes.

Relationships connect a source node and a target node. They always have a direction, and they

must have one single type to classify what type of relation it is.

To further describe a node or a relationship, properties can be added in form of key-value pairs.

Values can hold different data types, such as numbers, strings, booleans or homogeneous lists.

Neo4j is schema optional, meaning that it is not necessary to create a schema up front [2]. Nodes

and relationships can be created right away. Indexes and constrains can be introduced at any

point in time to gain performance and modelling benefits.

2.4.2 Cypher

Cypher is the graph query language that allows storing, retrieving, and manipulating data stored

in Neo4j. Like Neo4j itself, Cypher is open source and backed by a number of companies.

Cyphers visual way of matching patterns and relationships makes it easy to learn and intuitive

to use. The ASCII-art type of syntax uses rounded brackets to refer to nodes and square brackets

to refer to relationships. Property filtering can be achieved using curly brackets. Writing queries

is like drawing a graph pattern as shown in figure 2.2.

2 Databases Neo4j – Graph Database

8

Figure 2.2: Cyphers ASCII-art type of syntax [3]

Cypher was inspired by SQL and works with a similar set of clauses. The MATCH clause can be

used to select data and the RETURN clause defines what data to return from the result set.

Conditions can be applied using the WHERE clause, ordering can be achieved using the ORDER

BY clause and limiting can be achieved using LIMIT. For persons that already have experience

with other database query languages such as the standardized SQL, getting started with Cypher

feels familiar.

The power of Cypher comes from the way it handles traversing of relationships. It’s almost like

using natural language. As an example, finding persons that like the same topics as the person

with ID 1 can be achieved with
MATCH (:Person {id: 1})-[:LIKES]->(topic)<-[:LIKES]-(persons) RETURN persons

The mix of the visual representation and the language used makes it quite obvious what the

query does. Traversing a relationship from the node specified before the relationship to the node

specified afterwards requires the arrow to point from left to right: ()-[]->(). To reverse the

traversing direction, only the arrow has to be adjusted to point from right to left: ()<-[]-().

Similar to SQL, there are other clauses that can be used for more complex queries, to e.g. group

and aggregate nodes.

3 Database Implementation Creating a Test Dataset

9

 3

Database Implementation

3.1 Creating a Test Dataset 9

3.2 Setup of Database Servers 11

3.2.1 MySQL Server Setup ... 11

3.2.2 Neo4j Server Setup .. 15

3.3 Import Test Data 16

3.3.1 Import Data into MySQL Database ... 16

3.3.2 Import Data into Neo4j Database .. 17

3.4 Optimizing Schema and Data 19

3.5 Queries for the Use Cases 21

3.6 Validating the Queries 27

3.7 Automation 28

3.1 Creating a Test Dataset

Comparing two database systems in the context of social web applications requires a dataset,

that includes all relevant data for the use cases.

There are several platforms such as Kaggle [4], that offer various types of datasets for free use.

The difficulty is to find a dataset that perfectly fits the application purpose. Since no suitable

dataset could be found, a custom dataset was developed.

The most central aspect of social web applications are the people that use them. Therefore, the

first entity in the dataset is Person. A person has a first name, a last name, a gender, and a

country in which they live.

The second entity in the dataset is Friendship. Each person can be friends with any number of

people. In the context of this thesis, the relationship is defined to be bi-directional. If person A

is friends with person B, person B is friends with person A, too.

On social web platforms, people can not only connect with each other, they can also connect

with stars, clubs, companies, schools and much more. In this work, these entities are aggregated

into a single entity called Topic where each topic has a name. The relationship between a person

and a topic is called Like.

3 Database Implementation Creating a Test Dataset

10

These four entities represent the data model to be used for the evaluation.

With the data model specified, test data must be created. To ensure the evaluation delivers a

meaningful result, several constraints are placed on the dataset:

▪ 60’000 people from three different countries

▪ 100 topics

▪ Approximately 1’000’000 friendships

▪ Approximately 200’000 likes

The dataset is generated based on a PHP script developed as part of this thesis. As an input, the

script takes a set of configuration options. As an output, it generates CSV files containing the

dataset.

1 protected array $gender = ['female', 'male'];

2 protected array $countries = ['England', 'France', 'Germany'];

3 protected int $numberOfPersonsPerCountry = 20000;

4 protected int $numberOfRegionalConnectionsMin = 10;

5 protected int $numberOfRegionalConnectionsMax = 40;

6 protected int $numberOfNationalConnectionsMin = 5;

7 protected int $numberOfNationalConnectionsMax = 30;

8 protected int $numberOfInternationalConnectionsMin = 1;

9 protected int $numberOfInternationalConnectionsMax = 10;

10 protected int $numberOfLikesMin = 2;

11 protected int $numberOfLikesMax = 10;

12 protected float $probabilityForLikes = 0.6;

13 protected float $probabilityForRegionalConnections = 0.6;

14 protected float $probabilityForNationalConnections = 0.6;

15 protected float $probabilityForInternationalConnections = 0.05;

Code 3.1: Configuration options for the script generating the dataset

Listing 3.1 presents the possible configuration options. Each person is assigned a gender out of

$gender and a country out of $country. For each country, $numberOfPersonsPerCountry

persons are generated.

Friendships are generated based on probabilities and they’re classified into four classes:

▪ Local: 10 consecutive persons

▪ Regional: 100 consecutive persons

▪ National: Persons living in the same country

▪ International: Persons living in another country

Each class has an upper and a lower limit.

As topics serves a selection of companies from a list of the top 100 most valuable brands in

2022 [5] mixed with local companies and brands.

Likes are generated based on probabilities. With a probability of $probabilityForLikes, each

person is assigned between $numberOfLikesMin and $numberOfLikesMax likes.

3 Database Implementation Setup of Database Servers

11

3.2 Setup of Database Servers

Running tests and comparing the two database systems requires a server instance of both

database management systems, MySQL and a Neo4j. Each server needs to have the same set

of resources assigned in order to guarantee a fair comparison. This can best be achieved by

using virtualization.

As hosting platform serves an entry-level server running Proxmox Virtual Environment [6], an

open-source server management platform for enterprise virtualization. Its virtualization

technology is based the well-known KVM hypervisor.

The virtual machines for both servers get the same set of resources assigned:

• 4 CPU cores

• 8 GB RAM

• 32 GB SSD storage

This exceeds what MySQL and Neo4j require as minimum. They both require at least 2 CPU

cores and 2 GB RAM [7][8].

As a starting point, both machines get a clean install of Ubuntu Server 20.04 with enabled

firewall and SSH access. The individual setup for each server is explained in the next two

sections.

3.2.1 MySQL Server Setup

MySQL can be downloaded from the official website [9]. It is also available in most package

repositories. On Ubuntu Server, it can be installed using the APT package management system
with the command sudo apt install mysql-server. As soon as the command is finished,

the server service has to be started with sudo systemctl start mysql.service. Afterwards,

the MySQL server is up and running.

Create Database User

By default, the MySQL server comes with a predefined user named root. For security reasons,

this user should not be used for working with the database, only for management tasks.

Therefore, a new database user needs to be created with a restricted set of permissions.

This can be achieved by logging into the database server using the CLI command mysql -

uroot -p. It asks for the root password which is root by default. After the successful login, the

server is ready to receive SQL queries.

The code in listing 3.2 shows how to create a new user. The name of the new user is set to thesis

and the password is set to MasterThesis23!.

3 Database Implementation Setup of Database Servers

12

1 CREATE USER 'thesis'@'%' IDENTIFIED BY 'MasterThesis23!';

2 GRANT CREATE, ALTER, DROP, INSERT, UPDATE, INDEX, DELETE, SELECT,

REFERENCES, RELOAD, FILE on *.* TO 'thesis'@'%' WITH GRANT

OPTION;

3 FLUSH PRIVILEGES;

Code 3.2: Create a user and define permissions

For all future queries and sessions, the user thesis should be used instead of the root user. The
current session must be closed with exit; and a new session must be started, this time with the

newly created user: mysql -uthesis -p

Create a Database

As a first step, a database is required. It can be created with the CREATE DATABASE command:

1 CREATE DATABASE thesis;

Code 3.3: Create a database

After creating a new database, it can be selected with USE thesis; This will make sure all

future queries will be executed in that database.

Create Database Tables

After the creation of the database, the tables can be created using the command CREATE TABLE.

First, the table for persons is created:

1 CREATE TABLE person (

2 id int NOT NULL AUTO_INCREMENT,

3 gender varchar(255) NOT NULL,

4 first_name varchar(255) NOT NULL,

5 last_name varchar(255) NOT NULL,

6 language varchar(255) NOT NULL,

7 country varchar(255) NOT NULL,

8 PRIMARY KEY (id)

9) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci;

Code 3.4: Create a table for persons

For every column of the table, the name and the type must be specified. On line 3, a column

called id is defined to be of type integer. It is not allowed to be null, meaning it must always

have a value. Using the option AUTO_INCREMENT tells the database to always use the next unused

integer number if no value for id is provided.

The statement on line 8 defines the column id to be the primary key. This is a constraint that

requires the mentioned column to uniquely identify a person record. The value of this column

needs to be unique and is not allowed to be null.

The table for topics can be created using a similar query:

3 Database Implementation Setup of Database Servers

13

1 CREATE TABLE topic (

2 id int NOT NULL AUTO_INCREMENT,

3 name varchar(255) NOT NULL,

4 PRIMARY KEY (id)

5) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci;

Code 3.5: Create a table for topics

The relationship between persons is stored in a table called friendship. It has a person as an

origin of the friendship and a person as a target of the friendship. Such a relation is called a self-

referencing relationship.

1 CREATE TABLE friendship (

2 origin_id int NOT NULL,

3 target_id int NOT NULL,

4 created_at datetime NOT NULL,

5 PRIMARY KEY (origin_id,target_id)

6) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci;

Code 3.6: Create a table for friendships

While the query is quite similar to the two queries before, it’s important to notice the primary

key definition on line 5. It is not only referring to one column but it is referring to the two

columns origin_id and target_id. This means, a friendship is uniquely identified by its origin

and its target. The combination of these two values must be unique.

The same concept applies to the table for likes:

1 CREATE TABLE `like` (

2 person_id int NOT NULL,

3 topic_id int NOT NULL,

4 PRIMARY KEY (person_id,topic_id)

5) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci;

Code 3.7: Create a table for likes

One important aspect to note for the table like is the fact that like is a reserved keyword in

MySQL. It can be used to compare strings for partial match. A table can still be named like, but

all usages of the table name must be encoded with backticks. The same rule applies to all

reserved keywords.

Create Indexes and Foreign Keys

With the schema created so far, the database would be ready to be used. One important aspect

is missing, though: Indexes and foreign keys.

3 Database Implementation Setup of Database Servers

14

1 ALTER TABLE friendship

2 ADD INDEX person_origin_idx (origin_id),

3 ADD INDEX person_target_idx (target_id);

4 ALTER TABLE `like`

5 ADD INDEX idx_person (person_id),

6 ADD INDEX idx_topic (topic_id);

7

Code 3.8: Create indexes for columns used for lookup

Indexes can be used to speed up the process of finding rows with specific values. Without an

index, MySQL must read through the entire table to find the relevant rows, which gets slower

the larger the table gets. With the help of an index, the position of the records in the data file

can quickly be determined. Columns defined as primary key are always indexed. As a rule of

thumb, all columns used for filtering, joining or grouping should be indexed.

1 ALTER TABLE friendship

2 ADD CONSTRAINT fk_person_id_origin

 FOREIGN KEY (origin_id) REFERENCES person (id);

3 ALTER TABLE friendship

4 ADD CONSTRAINT fk_person_id_target

 FOREIGN KEY (target_id) REFERENCES person (id);

Code 3.9: Create foreign keys

The concept of foreign keys allows to create cross-references between tables. In listing 3.9, two

foreign keys, fk_person_id_origin and fk_person_id_target, are defined for the columns

origin_id and target_id of the table friendship. Both foreign keys reference the column id on

the table person. MySQL will make sure, that for every value that is inserted into one of these

columns, a row with the same value exists in the person table. As a result, it is not possible to

create a friendship record where the origin or target person does not exist.

Allow Remote Access

By default, a MySQL server can only be accessed locally, because it binds to the IP address

127.0.0.1. To allow remote connections, the configuration of the server needs to be adjusted

to bind to the IP address 0.0.0.0. Additionally, the firewall needs to be configured to allow

TCP traffic on port 3306.

Optimize Memory Usage

Tuning the memory usage of a database server is an art on its own and needs a lot of experience

in database server management and profound knowledge about the number and type of access.

The settings for a huge number of concurrent queries that only need little memory are

completely different from the settings for a low number of queries that require a lot of

processing power.

The primary setting that can be optimized on a MySQL server is the setting

innodb_buffer_pool_size. It defines the amount of RAM that can be used to cache data. By

default, it is set to 128 MB. For a server only running a MySQL server, it is recommended to

raise the setting to around 80% of the available memory. In the present case, the setting was

adjusted to 6 GB.

3 Database Implementation Setup of Database Servers

15

3.2.2 Neo4j Server Setup

Neo4j can be downloaded from the download center available on the official website [10]. Like

MySQL, it can be installed using most package managers, although it is not available in the

official repositories. The repository provided by Neo4j first needs to be added to the list of

sources as explained in the official install guide [11]. Once the repository is added, Neo4j can
be installed using the command sudo apt-get install neo4j=1:5.4.0. As soon as the

command is finished, the database server service needs to enabled with sudo systemctl

enable neo4j.service and started with sudo systemctl start neo4j.service.

Change User Credentials

By default, the Neo4j server comes with a user called neo4j and the password neo4j. For

security reasons, the user credentials must be changed. This can be achieved by using the CLI

tool cypher-shell. When first running the cypher shell, it will ask for the username and the

password. Afterwards, it will automatically request a new password. In the examples

throughout this thesis, the password MasterThesis23! is used.

Neo4j also comes with a predefined database called neo4j.

Create Database Schema

As opposed to relational databases, the graph database Neo4j is schema optional, meaning that

it is not necessary to have a schema defined up front. Nodes and relationships with new labels

and properties can be created ad-hoc. To speed up reading and writing queries and to guarantee

uniqueness for some properties, it is a good practice to generate indexes and constraints before

importing data, though.

1 CREATE CONSTRAINT UniquePerson

2 FOR (p:Person) REQUIRE p.personId IS UNIQUE;

3 CREATE CONSTRAINT UniqueTopic

4 FOR (t:Topic) REQUIRE t.topicId IS UNIQUE;

5 CREATE CONSTRAINT UniqueTopicName

6 FOR (t:Topic) REQUIRE t.name IS UNIQUE;

7

8 CREATE INDEX FOR (n:Person) ON (n.personId);

9 CREATE INDEX FOR (n:Topic) ON (n.topicId);

10

11 CREATE TEXT INDEX PersonFirstName

12 FOR (p:Person) ON (p.firstName);

13 CREATE TEXT INDEX PersonLastName

14 FOR (p:Person) ON (p.lastName);

Code 3.10: Create indexes and constraints

Notice how constraints and indexes can be defined without defining labels and properties first.

Setup APOC

APOC, short for Awesome Procedures on Cypher, is a standard utility library for common

procedures and functions. With over 450 well-supported procedures, it is the largest and most-

widely used extension for Neo4j. To set it up, the jar needs to be downloaded from the Neo4j

3 Database Implementation Import Test Data

16

website and placed in the plugins directory. After a restart of Neo4j, the plugin is ready to be

used.

Allow Remote Access

By default, a Neo4j server can only be accessed locally, because it binds to the IP address
127.0.0.1. To allow remote connections, the configuration of the server needs to be adjusted.

The configuration option dbms.default_listen_address must be set to 0.0.0.0.

Additionally, a firewall rule needs to be created allowing TCP traffic on port 7687.

Optimize Memory Usage

Neo4j comes with a CLI tool neo4j-admin that has a built-in command to get an initial memory

recommendation for the system it is running on. For the virtual machine used for this thesis, the

recommendation is:

server.memory.heap.initial_size=3500m

server.memory.heap.max_size=3500m

server.memory.pagecache.size=1900m

The recommended values need to be added to the configuration file manually.

3.3 Import Test Data

The test dataset, available as CSV files, needs to be imported into both databases. Both systems

provide native support for reading and importing data from CSV files.

3.3.1 Import Data into MySQL Database

The query to import data into the MySQL database is straight forward:

1 LOAD DATA INFILE '/var/lib/mysql-files/persons.csv'

2 INTO TABLE person

3 FIELDS TERMINATED BY ',' ENCLOSED BY '"' LINES TERMINATED BY '\n'

4 IGNORE 1 ROWS;

Code 3.11: Query to import CSV data into a MySQL table

The query expects the path to the CSV file and the name of the table the data should be imported

into. In line 3, common CSV settings are defined. The setting for FIELDS TERMINATED BY

defines the separator between values used in the file. ENCLOSED BY defines the type of quotes

used to enclose values that might contain a separator and LINES TERMINAED BY defines the

character(s) used to mark the end of a line. The option IGNORE 1 ROWS allows the first row

containing the column header to be ignored.

With the database schema introduced in section 3.2.1, MySQL tries to cast the values into the

expected format for each column automatically. In case that’s not possible, the system returns

an error.

The above query can be repeated for all CSV files of the dataset, only the file name and the

table name need to be adjusted.

3 Database Implementation Import Test Data

17

The best way to verify the successful import and to inspect the result is using a client application

with a graphical user interface. MySQL provides such an application, it is called MySQL

Workbench [14].

Figure 3.1: MySQL Workbench listing person records

3.3.2 Import Data into Neo4j Database

The process of importing data into the Neo4j database is quite similar to the one for MySQL.

The big difference is the missing schema. While the MySQL database has a predefined schema

with tables and columns, Neo4j doesn’t know what nodes, relations, and properties to expect.

Therefore, it cannot cast the values automatically, it needs to be configured manually.

3 Database Implementation Import Test Data

18

1 LOAD CSV WITH HEADERS FROM 'file:///persons.csv' AS row

2 WITH toInteger(row['id']) AS personId,

3 row['gender'] AS gender,

4 row['first_name'] AS firstName,

5 row['last_name'] AS lastName,

6 row['language'] AS language,

7 row['country'] AS country

8 MERGE (p:Person {personId: personId})

9 SET p.gender = gender,

10 p.firstName = firstName,

11 p.lastName = lastName,

12 p.language = language,

13 p.country = country

14 RETURN count(p)

Code 3.12: Query to import CSV data into a Neo4j database as nodes

The command on line 1 instructs the system to load the CSV file persons.csv, iterate over each

row of the file and assign it to the variable row. The first row is ignored because of the option

WITH HEADERS.

Lines 2 to 7 prepare the values of the row for the import. This is where the casting takes place.

In the case of a person, all values except for the id are strings and therefore don’t require manual

casting. The id is expected to be an integer, therefore it is casted to an integer using the function

toInteger(). Neo4j provides several methods to cast values into a specific type.

Lines 8 to 13 create a new node with a label Person and a property personId set to the ID

prepared in line 2. That is, only if a node with mentioned id does not exist yet. Otherwise, the

existing node and its properties would be updated. The reason for this behaviour is the MERGE

clause. By using MERGE instead of CREATE, the query doesn’t fail in case of a duplicated ID.

This is especially interesting when importing data into a database that is already populated with

data.

Finally, with the RETURN clause the return value of the query can be defined, which here is the

number of nodes created.

The query for importing topics is quite similar because topics are nodes as well. As opposed to

that, friendships and likes are relationships. They require a slightly different query:

1 LOAD CSV WITH HEADERS FROM 'file:///likes.csv' AS row

2 CALL {

3 WITH row, datetime(replace(row['created_at'], ' ', 'T') as cr

4 MATCH (p:Person {personId: toInteger(row['person_id'])})

5 MATCH (t:Topic {topicId: toInteger(row['topic_id'])})

6 MERGE (p)-[:LIKES {createdAt: cr)}]->(t)

7 } IN TRANSACTIONS OF 500 ROWS

Code 3.13: Query to import CSV data into a Neo4j database as relationships

Instead of creating a new node, a new relationship needs to be created between a node with

label Person and a node with label Topic. Lines 4 and 5 match the person as p and the topic as

t. On lines 6 to 8, a new relation is created with the additional property createdAt.

Because of the large number of friendships and likes, both queries are wrapped into a CALL

clause. This allows to specify the maximum number of rows to be committed in one transaction.

The more rows in one commit, the more memory is required.

3 Database Implementation Optimizing Schema and Data

19

Again, the best way to verify the successful import and to inspect the result is using a client

application with a GUI. Neo4j provides such an application, it is called Neo4j Desktop [15].

Figure 3.2: Neo4j Desktop presenting a graph with nodes and relationships

3.4 Optimizing Schema and Data

After the import of the test dataset, the databases are ready to be queried. There remains

potential for optimization, tough. One obvious optimization relates to the country a person lives

in. The column contains the name of a country which is a redundant piece of information. This

requires normalization.

For MySQL, a new table called country is introduced and instead of storing the name of the

country on the person, the ID of the country is stored.

3 Database Implementation Optimizing Schema and Data

20

1 CREATE TABLE country (

2 id int NOT NULL AUTO_INCREMENT,

3 name varchar(255) NOT NULL,

4 PRIMARY KEY (id)

5) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci;

6

7 INSERT INTO country (name)

8 VALUES ('England'), ('France'), ('Germany');

9

10 UPDATE person AS p

11 INNER JOIN country AS c ON p.country = c.name

12 SET p.country = c.id;

13

14 ALTER TABLE person MODIFY country INT NOT NULL;

15

16 ALTER TABLE person

17 ADD CONSTRAINT fk_country_id FOREIGN KEY (country)

18 REFERENCES country (id);

Code 3.14: SQL queries to normalize the column country

The approach for Neo4j is very similar. A new node label :Country is introduced together with

a constraint to guarantee the country name is unique. The property country is replaced with a

new relationship named :LIVES_IN.

1 CREATE CONSTRAINT UniqueCountryName

2 FOR (c:Country) REQUIRE c.name IS UNIQUE;

3

4 CREATE (c:Country {name: 'England'});

5 CREATE (c:Country {name: 'France'});

6 CREATE (c:Country {name: 'Germany'});

7

8 MATCH (p:Person)

9 MATCH (c:Country {name: p.country})

10 CREATE (p)-[:LIVES_IN]->(c);

11

12 MATCH (p:Person)

13 REMOVE p.country;

Code 3.15: SQL query to insert bidirectional friendship records

When running some experimental queries on the table friendship, it becomes obvious, that

querying unidirectional self-referencing records is inefficient and results in large queries. If

person A is a friend of person B, it means that person B is also a friend of person A. If there is

only one record in the table friendship with an origin and a target, every query needs to evaluate

both directions, from origin to target and from target to origin. It is not only inefficient, but also

confusing.

A better approach is to model the relationship bidirectional. Every friendship is stored as two

records, one with the origin A and the target B, one with the origin B and the target A. Even

though this is a violation of the domain-key normal form [Tho88], it is the way to go because it

has shown to be twice as fast, and the queries are much simpler.

3 Database Implementation Queries for the Use Cases

21

1 INSERT INTO friendship (origin_id, target_id, created_at)

2 SELECT target_id, origin_id, created_at FROM friendship;

Code 3.16: SQL query to insert bidirectional friendship records

As a last step, MySQL offers a way to optimize the physical storage of the table data and

associated index data. This reduces storage space and improves I/O efficiency when accessing

the table [13].

1 OPTIMIZE TABLE person, topic, friendship, `like`, country;

Code 3.17: SQL query to optimize the table storage

3.5 Queries for the Use Cases

The main element for comparing the two database systems in this thesis is the set of queries for

fetching the data. Usually, there are several ways to query the same set of data, but they can

differ significantly in terms of performance. Writing efficient queries is a complex, time-

consuming, and tedious work. It is a profession on its own.

The queries for the use cases defined in section 1.2 are listed and explained below. It’s important

to note that they contain a placeholder for the ID of the user called $userId. This placeholder

is substituted with the actual user ID before the queries are passed to the database management

system.

1 SELECT p.*

2 FROM person AS p

3 INNER JOIN friendship AS f ON p.id = f.target_id

4 WHERE f.origin_id = $userId

5 ORDER BY p.id;

Code 3.18: SQL query for use case 1

1 MATCH

2 (me:Person {personId: $userId})-[:IS_FRIENDS_WITH]-(p:Person)

3 RETURN p.personId, p.firstName. p.lastName

4 ORDER BY p.personId;

Code 3.19: Cypher query for use case 1

The queries for the first use case are rather simple. They return all persons that have a

relationship of type friendship with the person with the ID $userId.

3 Database Implementation Queries for the Use Cases

22

1 WITH RECURSIVE paths (current_target_id, distance, path) AS (

2 SELECT origin_id, 0, CAST(origin_id AS CHAR(100))

3 FROM friendship

4 WHERE origin_id = $userId

5 UNION DISTINCT

6 SELECT friendship.target_id, distance + 1,

7 CONCAT(paths.path, ',', friendship.target_id)

8 FROM paths

9 JOIN friendship ON current_target_id = friendship.origin_id

10 WHERE distance < 3

11 AND NOT FIND_IN_SET(friendship.target_id, path)

12)

13 SELECT DISTINCT p.*, distance, path, mut.mutual_friends

14 FROM paths

15 JOIN person p ON p.id = current_target_id

16 LEFT JOIN (

17 SELECT mf1.origin_id as personId, count(*) as mutual_friends,

18 2 as dist

19 FROM friendship AS mf1

20 JOIN friendship AS mf2

21 ON mf1.target_id = mf2.origin_id

22 AND mf1.origin_id <> mf2.target_id

23 WHERE mf2.target_id = $userId

24 AND mf1.origin_id NOT IN (

25 SELECT f.target_id FROM friendship f

26 WHERE f.origin_id = $userId

27)

28 GROUP BY mf1.origin_id, mf2.target_id

29) AS mut ON mut.personId = p.id AND mut.dist = distance

30 WHERE current_target_id <> $userId

31 AND p.id NOT IN (

32 SELECT target_id FROM friendship WHERE origin_id = $userId

33)

34 GROUP BY p.id

35 ORDER BY mut.mutual_friends DESC, distance, p.first_name,

36 p.last_name

37 LIMIT 100;

Code 3.20: SQL query for use case 2

The SQL query presented in listing 3.20 makes use of an advanced concept called recursive

common table expression (CTE). A CTE is a named temporary result set that exists within the

scope of a single statement and that can be referred to later within that statement [12]. A

recursive CTE can be used for series generation and traversing hierarchical or tree-structured

data.

The first SELECT statement starting on line 2 is a non-recursive statement. It provides the initial

row for the dataset. The second SELECT statement starting on line 6 is a recursive statement. It

produces the result set iteratively until the condition provided in the WHERE clause on line 10 is

true.

The recursive CTE generates the temporary result set paths containing the paths and the

distance (number of hops) for the friendships of the person with the ID $userId. The condition

to stop the recursion requires the distance to be lower than 3. If more relationships should be

traversed, that number could be raised.

3 Database Implementation Queries for the Use Cases

23

The 6 degrees of separation theory claims, that every person can get to know anyone by

connecting though 6 people, or fewer [Fri29]. Raising the distance limit can quickly lead to an

enormous result set.

For all the paths, mutual friends are determined.

1 MATCH (me:Person {personId: $userId})

2 CALL apoc.path.expandConfig(me, {

3 relationshipFilter: "IS_FRIENDS_WITH",

4 minLevel: 1,

5 maxLevel: 3,

6 uniqueness: "NODE_GLOBAL"

7 })

8 YIELD path

9 WITH me, apoc.path.elements(path) as pathElements, path

10 WITH me, length(path) as distance,

11 pathElements[size(pathElements) - 1] as friend

12 OPTIONAL MATCH

13 mfs=(me)-[:IS_FRIENDS_WITH]-(mf)-[:IS_FRIENDS_WITH]-

(friend:Person)

14 WHERE distance = 2

15 RETURN friend, distance, count(DISTINCT mfs) AS mutualFriends

16 ORDER BY mutualFriends DESC, distance, friend.firstName,

17 friend.lastName

18 LIMIT 100;

Code 3.21: Cypher query for use case 2

The cypher query follows the same approach. It makes use of the APOC library to expand the

path of friendship relations starting at the person with the ID $userId. The uniqueness setting

NODE_GLOBAL ensures every node is visited only once. The max level of 3 limits the distance to

3 hops.

Again, for all the paths, mutual friends are determined.

3 Database Implementation Queries for the Use Cases

24

1 SELECT SUM(score) as finalScore, p.*

2 FROM (

3 SELECT DISTINCT p.*, COUNT(*) * 5 as score

4 FROM person AS p

5 JOIN `like` AS l ON p.id = l.person_id

6 JOIN topic AS t ON l.topic_id = t.id

7 WHERE t.id IN

8 (SELECT topic_id FROM `like` WHERE person_id = $userId)

9 AND p.id <> $userId

10 AND p.id NOT IN

11 (SELECT target_id FROM friendship WHERE origin_id = $userId)

12 GROUP BY p.id

13 UNION ALL

14 SELECT DISTINCT p.*, 1 as score

15 FROM person AS p

16 WHERE p.country =

17 (SELECT country FROM person WHERE id = $userId)

18 AND p.id <> $userId

19 AND p.id NOT IN

20 (SELECT target_id FROM friendship WHERE origin_id = $userId)

21 UNION ALL

22 SELECT DISTINCT p.*, mut.mutual_friends * 0.25 AS score

23 FROM person AS p

24 JOIN friendship AS f1 ON p.id = f1.target_id

25 JOIN (

26 SELECT mf1.origin_id, mf2.origin_id as personId,

27 count(*) as mutual_friends

28 FROM friendship AS mf1

29 JOIN friendship AS mf2 ON mf1.target_id = mf2.target_id

30 AND mf1.origin_id <> mf2.origin_id

31 WHERE mf1.origin_id = $userId

32 AND mf2.origin_id NOT IN

33 (SELECT f.target_id AS friend_id_2 FROM friendship f

34 WHERE f.origin_id = $userId)

35 GROUP BY mf1.origin_id, mf2.origin_id

36) AS mut ON mut.personId = f1.target_id

37 WHERE f1.origin_id IN

38 (SELECT f.target_id AS friend_id FROM friendship f

39 WHERE f.origin_id = $userId)

40 AND f1.target_id NOT IN

41 (SELECT f.target_id AS friend_id_2 FROM friendship f

42 WHERE f.origin_id = $userId)

43 AND f1.target_id <> $userId

44) AS p

45 GROUP BY p.id

46 ORDER BY finalScore DESC, p.first_name, p.last_name

47 LIMIT 100;

Code 3.22: SQL query for use case 3

The SQL query for use case 3 makes use of a subquery. The sub query combines persons based

on different criteria and provides a score for each criterion. The main query groups the persons

by their ID and calculates the final score based on the sum of the individual scores.

The individual scores are determined based on the number of common relationships. The score

for common interests is boosted by 500% and the score for mutual friends is reduced to 25%.

3 Database Implementation Queries for the Use Cases

25

1 MATCH (me:Person { personId: $userId })

2 CALL {

3 WITH me

4 OPTIONAL MATCH pMutualFriends=(me)-[:IS_FRIENDS_WITH]-

5 (mf:Person)-[:IS_FRIENDS_WITH]-(friend:Person)

6 WHERE NOT EXISTS ((me)-[:IS_FRIENDS_WITH]-(friend))

7 RETURN friend, count(DISTINCT pMutualFriends) * 0.25 AS score

8 UNION ALL

9 WITH me

10 OPTIONAL MATCH pSameCountry=(me)-[:LIVES_IN]->

11 (c:Country)<-[:LIVES_IN]-(friend:Person)

12 WHERE NOT EXISTS ((me)-[:IS_FRIENDS_WITH]-(friend))

13 RETURN friend, count(DISTINCT pSameCountry) AS score

14 UNION ALL

15 WITH me

16 OPTIONAL MATCH pTopics=(me)-[:LIKES]->

17 (topic:Topic)<-[:LIKES]-(friend:Person)

18 WHERE NOT EXISTS ((me)-[:IS_FRIENDS_WITH]-(friend))

19 RETURN friend, count(DISTINCT pTopics) * 5 AS score

20 }

21 RETURN DISTINCT friend, sum(score) as score

22 ORDER BY score DESC

23 LIMIT 100;

Code 3.23: Cypher query for use case 3

The cypher query for use case 3 makes use of a subquery as well. It follows the same algorithm

that’s used for the SQL query and applies the same weights.

The queries for use case 4 not only use the placeholder $userId but also the placeholder $s

containing the string input from the search field.

3 Database Implementation Queries for the Use Cases

26

1 (SELECT

2 CONCAT(p.first_name, ' ', p.last_name) AS label,

3 (CASE WHEN f.origin_id IS NOT NULL THEN true ELSE false END)

4 AS connected,

5 (CASE

6 WHEN CONCAT(p.first_name, ' ', p.last_name) LIKE '$s' THEN 10

7 WHEN CONCAT(p.first_name, ' ', p.last_name) LIKE '$s%' THEN 5

8 WHEN CONCAT(p.first_name, ' ', p.last_name) LIKE '%$s' THEN 1

9 ELSE 3

10 END) AS score, 'Person' as type, p.id

11 FROM person AS p

12 LEFT JOIN friendship AS f

13 ON p.id = f.target_id AND f.origin_id = $userId

14 WHERE

15 CONCAT(p.first_name, ' ', p.last_name) LIKE '%$s%'

16 ORDER BY

17 (CASE WHEN origin_id IS NOT NULL THEN 1 ELSE 2 END),

18 (CASE

19 WHEN CONCAT(p.first_name, ' ', p.last_name) LIKE '$s' THEN 1

20 WHEN CONCAT(p.first_name, ' ', p.last_name) LIKE '$s%' THEN 2

21 WHEN CONCAT(p.first_name, ' ', p.last_name) LIKE '%$s' THEN 4

22 ELSE 3

23 END), first_name, last_name

24 LIMIT 5)

25 UNION

26 (SELECT

27 t.name AS label,

28 (CASE WHEN l.person_id IS NOT NULL THEN true ELSE false END)

29 AS connected,

30 (CASE

31 WHEN t.name LIKE '$s' THEN 10

32 WHEN t.name LIKE '$s%' THEN 5

33 WHEN t.name LIKE '%$s' THEN 1

34 ELSE 3

35 END) AS score, 'Topic' AS type, t.id

36 FROM topic AS t

37 LEFT JOIN `like` AS l ON t.id = l.topic_id

38 AND l.person_id = $userId

39 WHERE

40 t.name LIKE '%$s%'

41 ORDER BY

42 (CASE WHEN l.person_id IS NOT NULL THEN 1 ELSE 2 END),

43 (CASE

44 WHEN t.name LIKE '$s' THEN 1

45 WHEN t.name LIKE '$s%' THEN 2

46 WHEN t.name LIKE '%$s' THEN 4

47 ELSE 3

48 END), t.name LIMIT 5)

49 ORDER BY connected DESC, score DESC

Code 3.24: SQL query for use case 4

Both, the SQL query, and the cypher query, make heavy use of string comparison for use case

4. To return the best possible result for the search string provided as input, several iterations of

string matching are required. First, records are selected that contain the search string $s at any

position in the name. Second, based on the position of the search string in the name, a score is

assigned. An exact match gets the highest score, a match at the beginning of the name gets the

second-highest score, a match at the end of the name gets the lowest score.

3 Database Implementation Validating the Queries

27

This algorithm is applied for persons and for topics. Finally, the results are combined using the
UNION clause and then ordered, first by the fact if a connection exists (friendship in case of a

person, like in case of a topic), then by score.

1 CALL {

2 MATCH (f:Person)

3 WITH toLower(f.firstName + ' ' + f.lastName) AS s, f

4 WHERE s CONTAINS '$s'

5 WITH s, f, exists((f)-[:IS_FRIENDS_WITH]-

6 (:Person {personId: $userId})) as connected, 'Person' AS type

7 RETURN f.personId AS id,

8 f.firstName + ' ' + f.lastName AS label, connected, type,

9 (CASE WHEN s = '$s' THEN 10

10 WHEN s STARTS WITH '$s' THEN 5

11 WHEN s ENDS WITH '$s' THEN 1

12 ELSE 3 END) AS score

13 ORDER BY

14 connected DESC,

15 (CASE WHEN s = '$s' THEN 1

16 WHEN s STARTS WITH '$s' THEN 2

17 WHEN s ENDS WITH '$s' THEN 4

18 ELSE 3 END), f.firstName, f.lastName

19 LIMIT 5

20 UNION

21 MATCH (t:Topic)

22 WITH t, toLower(t.name) AS searchField

23 WHERE s CONTAINS '$s'

24 WITH t, s, exists((t)<-[:LIKES]-

25 (:Person {personId: $userId})) AS connected, 'Topic' AS type

26 RETURN t.topicId AS id, t.name AS label, connected, type,

27 (CASE WHEN s = '$s' THEN 10

28 WHEN s STARTS WITH '$s' THEN 5

29 WHEN s ENDS WITH '$s' THEN 1

30 ELSE 3 END) AS score

31 ORDER BY

32 connected DESC,

33 (CASE WHEN s = '$s' THEN 1

34 WHEN s STARTS WITH '$s' THEN 2

35 WHEN s ENDS WITH '$s' THEN 4

36 ELSE 3 END), s

37 LIMIT 5

38 }

39 RETURN id, label, connected, score, type

40 ORDER BY connected DESC, score DESC

Code 3.25: Cypher query for use case 4

3.6 Validating the Queries

Validating the result of a query on a large dataset is hard to do, because it’s difficult to reason

about such a huge amount of data. That’s the reason why a second, much smaller dataset was

developed. With such a small dataset, it becomes easy to validate if a query is returning the

expected result or if some parts are missing out.

3 Database Implementation Automation

28

Figure 3.3: Dataset for query validation

To test the queries, they were executed in the context of the person Alice with ID 1.

3.7 Automation

Running predefined database queries is not a difficult task, but it involves some steps:

1. Open a terminal window

2. Connect to the database server

3. Enter the user credentials

4. Enter the query

5. Execute the query

While this is fine for an occasional test, it is too much of an overhead when running a systematic

evaluation for several use cases with several repetitions.

To simplify the process of executing a series of queries and storing metadata such as the

execution time for each query, a custom CLI command was implemented. A CLI command is

a piece of code, that can be executed from the command line. It runs a sequence of tasks.

The custom CLI command implemented as part of this thesis runs the queries for all the use

cases on both database systems for a selected set of users, measures the performance and logs

the results.

4 Evaluation Evaluation Criteria

29

 4

Evaluation

4.1 Evaluation Criteria 29

4.1.1 Performance ... 29

4.1.2 Number of Clauses .. 30

4.1.3 Developer Convenience ... 30

4.2 Evaluation 30

4.3 Result 31

4.3.1 Result of Performance Evaluation ... 31

4.3.2 Result of Number of Clauses Evaluation ... 33

4.3.3 Result of Developer Convenience Evaluation ... 33

4.4 Discussion 33

4.1 Evaluation Criteria

4.1.1 Performance

The first criterion for the evaluation of the database systems is the performance of the queries.

The performance is measured as time it takes to run the query and fetch the result in

milliseconds.

Both databases have caching mechanisms in place, therefore, simply running the same query

repeatedly is not a fair evaluation. Disabling the cache would not be a fair evaluation, too,

because in a production environment, caches will always be enabled.

A fair way of conducting performance measurement in the context of a web application is to

run a large series of queries, like it happens in a production environment. The performance of

each query is logged for evaluation.

The order in which the queries are executed is the same for both databases.

4 Evaluation Evaluation

30

4.1.2 Number of Clauses

The second evaluation criterion is the number of clauses required to write the queries. This

number serves as an indicator for the effort that needs be put into writing queries for each of

the systems.

While some clauses are essential for the result of the query, others are optional. The optional

clauses are not counted for this evaluation.

4.1.3 Developer Convenience

The third evaluation criterion is the developer convenience. Each query is classified into one of

the four categories easy, intermediate, hard, and ultra-hard based on the cognitive load required

to understand the query and the effort it took to write it. This classification serves as an indicator

of maintainability.

This criterion is largely subjective but serves as an interesting addition to the second criterion.

4.2 Evaluation

To perform the performance evaluation, four persons were selected from the dataset. Care was

taken to ensure these persons have a varying number of relationships.

User ID Number of friends Number of likes

112 43 3

2624 3 0

19143 44 0

55745 56 10

Table 4.1: Overview of users selected for evaluation

Based on the CLI command presented in section 3.7, the performance evaluation was

conducted.

To perform the number of clauses evaluation, the clauses were counted manually, and the result

was tabulated. Table 4.2 lists which clauses were counted for the number of clauses evaluation

and which ones were ignored.

Database Clauses counted Clauses not counted

MySQL SELECT, FROM, JOIN, ORDER BY, WITH

RECURSIVE, UNION, GROUP BY, LIMIT, IN, NOT

IN, CASE, LIKE, WHEN/THEN, ELSE, CAST(),

CONCAT(), FIND_IN_SET(), SUM()

AS, ON, DISTINCT

Neo4j MATCH, OPTIONAL MATCH, RETURN, ORDER BY,

CALL, YIELD, WITH, WHERE, LIMIT, EXISTS, NOT

EXISTS, CONTAINS, length(), count(),

AS, DISTINCT

4 Evaluation Result

31

apoc.path.expandConfig, apoc.path.elements,

sum(), toLower(), {}-Filter, -[]-()

Table 4.2: Clauses that were counted during the evaluation

For the developer convenience evaluation, the queries were studied and classified.

4.3 Result

4.3.1 Result of Performance Evaluation

Figures 4.1 to 4.4 present the result of the performance evaluation as box plot diagrams.

Figure 4.1: Query performance comparison for list of friends

Figure 4.2: Query performance comparison for friends recommendation #1

4 Evaluation Result

32

Figure 4.3: Query performance comparison for friends recommendation #2

Figure 4.4: Query performance comparison for auto-suggest

4 Evaluation Discussion

33

4.3.2 Result of Number of Clauses Evaluation

Figure 4.5 presents the result of the number of clauses evaluation as a bar chart.

Figure 4.5: Result of number of clauses evaluation

4.3.3 Result of Developer Convenience Evaluation

Table 4.3 presents the result of the developer convenience evaluation.

Use case MySQL Neo4j

List of friends Easy Easy

Friends recommendation Ultra hard Hard

Friends recommendation #2 Hard Intermediate

Auto-suggest Hard Hard

Table 4.3: Result of developer convenience evaluation

4.4 Discussion

The results of the evaluation presented in section 4.3 paint a mixed picture. The trend is not the

same for all criteria.

The performance evaluation shows that the performance is strongly dependent on the use case

and the data set.

For use case 1, MySQL delivers the better performance. This is interesting in the sense that

MySQL needs to execute a join of the two tables person and friendship at runtime, while Neo4j

needs to fetch persisted relationships for a node in a graph. The obvious assumption would be

4 Evaluation Discussion

34

that Neo4j could serve this use case more performantly. It is not possible to say conclusively,

why this is the case.

For use case 2, the effect that was surprising for use case 1 emerges. MySQL needs to execute

a number of joins at runtime, which depends on the number of people that can be reached by

traversing all the friendships with a distance of 3 starting at the original person. For the person

with ID 2624, the total number of persons that can be reached with said distance is 1451. For

the person with ID 19143, the total number is 19064. For each of these persons, the number of

common friends must then be determined by using another join. This is a costly operation, and

it has more impact, the larger the set of persons gets. Neo4j does not have to calculate any joins

at runtime, it needs to traverse the persisted relationships of the graph.

Use case 3 shows the same trend for MySQL and Neo4j: The larger the number of involved

records or nodes and relationships respectively, the longer it takes to execute the query, despite

the limited result set. For the person with ID 2624, there are 0 people involved with the same

interests as the original person, 19'996 people living in the same country and 66 people with

common friends. For the person with ID 55745, there are 16,428 people involved with the same

interests as the original person, 19’943 people living in the same country, and 2,302 people with

mutual friends.

Here, the optimization of friendships as a bidirectional relationship in MySQL comes into play

particularly well. In Neo4j, no such optimization was done, because in Neo4j, a relationship is

automatically valid in both directions. In case of a bidirectional relationship, the direction

should be omitted in the queries [Ian13, p. 65]. A quick test to measure the performance impact

of unidirectional vs. bidirectional traversing of friendship relationships showed that for use case

3, directed traversing of the relationships is about 30% more efficient on average. This is an

interesting topic for future work.

Use Case 4 depends heavily on matching a search string in one or multiple columns or

properties at different positions. Comparing the other results, the performance for this use case

is more consistent. It seems that MySQL is somewhat more efficient for this type of query.

Considering the number of clauses required for writing the queries, there is a clear trend. Neo4j

requires up to 50% less clauses to write the queries for the same results as with MySQL. It

implies, that writing Cypher queries is easier, less time consuming and less prone to errors.

This implication is backed by the results of the evaluation of developer convenience. On

average, Cypher queries are rated to be easier to understand while SQL queries produce more

cognitive load. Thanks to the ASCII-art type of syntax, reasoning about Cypher queries is

easier, even for me, who has known SQL for more than 15 years but seen Cypher for the first

time.

Looking at all the results combined, one can observe a slight trend towards Neo4j. However,

determining which system performs better over all depends on the prioritization of the criteria

and the use cases.

5 Prototype Architecture

35

 5

Prototype

5.1 Architecture 35

5.2 Technology Stack 36

5.3 Implementation 36

5.3.1 REST API .. 36

5.3.2 Frontend Application ... 38

5.4 User Interface 38

To demonstrate the use cases defined for this thesis in a live example, a prototype was planned,

designed, and implemented. The following sections explain its architecture, describe the

technology stack that was used and present the user interface.

5.1 Architecture

Figure 5.1: The architecture of the prototype

The prototype is implemented as a single-page frontend application that communicates with a

backend API based on RESTful principles. One of the big advantages of RESTful web services

is the separation of concerns. The user interface is separated from the data storage, allowing the

two components to evolve independently [FIE00].

5 Prototype Technology Stack

36

Like many new software tools these days, the frontend is implemented as a web application. It

does not require any software to be installed on a client, a simple web browser is enough to

access the application.

The REST API provides two sets of endpoints, one for requests to be processed using the

MySQL database and one for requests to be processed using the Neo4j database. The distinction
is made based on the URI of the request. While request URIs prefixed with /api/mysql/ are

processed using MySQL, request URIs prefixed with /api/neo4j/ are processed using Neo4j.

5.2 Technology Stack

The frontend application is implemented based on Angular [16]. Angular is a component-based

framework for building scalable web applications. The framework built on TypeScript [17] is

developed by Google and has first been released in 2010. Angular projects can scale from

single-developer projects to enterprise-level applications. The framework provides a suite of

developer tools that help developing, building, testing, and updating code [18].

The REST API is implemented based on PHP [19] and the web application framework Symfony

[20]. Symfony was first released in 2005 under MIT license and has since been under active

development. It aims to speed up the development of web application by offering a wide range

of tools and presets replacing repetitive coding tasks. By implementing a lot of important design

patterns such as MVC, factories and singletons and by sticking to the approach of domain-

driven design, it helps writing good quality code.

To connect to the MySQL database, the Doctrine database abstraction layer (DBAL) [21] is

used. While it would provide a large set of features to interact with several types of databases,

it is only used to connect to the database and execute raw queries. This ensures the least amount

of overhead.

To connect to the Neo4j database, the Neo4j PHP Client and Driver package [22] is used. The

package provides the required drivers to access a Neo4j database using the Bolt protocol.

5.3 Implementation

5.3.1 REST API

Each endpoint is implemented as a controller method. A controller method typically follows

this sequence:

1. Validate the request: Are all the required arguments provided as part of the request? If not,

return a validation error.

2. Process the request: Prepare the query, hand over the query to the desired database server,

fetch the result.

3. Return a response: Return the requested data as JSON [23].

5 Prototype Implementation

37

1 #[Route('/api/mysql/friends', name: 'api_mysql_friends')]

2 public function friends(Request $request): Response

3 {

4 $userId = (int)$request->get('userId');

5 if ($userId === 0) {

6 return new JsonResponse('Invalid request', 400);

7 }

8

9 $query = MysqlQueryCollection::getFriendsListQuery($userId);

10 $results = $this->connection->fetchAllAssociative($query);

11

12 return new JsonResponse([

13 'data' => $results,

14 'count' => count($results),

15]);

16 }

Code 5.1: Controller method for use case 1

Line 1 is the route definition, meaning that this method is called when a request comes in with

the uri /api/mysql/friends.

Lines 4 to 6 take care about the validation of the request. First, the query parameter userId is

casted to an integer and then it is verified, that it isn’t equal to 0. If it is, a JSON response is

returned with the HTTP status code 400, meaning Bad Request [FR14].

Lines 9 and 10 prepare the query, send it to the MySQL database and fetch the results.

Lines 12 to 15 return the fetched data as a JSON response to the client.

All endpoints are implemented following this schema. The available endpoints are listed in

Table 5.1. It’s important to note that {db} is a placeholder for either mysql or neo4j.

Additionally, each endpoint expects a query parameter userId to be present defining in the

context of which user the request should be executed.

URI Method Description

/api/{db}/friends GET Run query for use case 1

/api/{db}/friends-recommendation GET Run query for use case 2

/api/{db}/friends-recommendation-2 GET Run query for use case 3

/api/{db}/auto-suggest?s=X GET Run query for use case 4 with search term X

/api/{db}/profile?profileId=X GET Return profile for person with ID X

/api/{db}/topic?topicId=X GET Return topic with ID X

/api/{db}/friend?profileId=X POST Add person with ID X as friend

/api/{db}/friend?profileId=X DELETE Remove person with ID X as friend

/api/{db}/like?topic=X POST Like topic with ID X

/api/{db}/like?topic=X DELETE Unlike topic with ID X

Table 5.1: Overview of REST API endpoints

5 Prototype User Interface

38

5.3.2 Frontend Application

The frontend application of the prototype is straight forward. It provides a view for each use

case. Next to the result it gets from the REST API, it presents a performance statistic for each

request and calculates the average value for each use case and database.

The statistics component is implemented based on an HTTP interceptor. It intercepts all

requests and responses to and from the backend. If it recognizes a response for a use case, it

stores the duration provided by the backend in a global statistics service.

1 export class HttpInterceptorService implements HttpInterceptor {

2 constructor(private statistics: StatisticsService) {}

3

4 public intercept(

5 req: HttpRequest<any>, next: HttpHandler

6): Observable<HttpEvent<any>> {

7 return next.handle(req).pipe(

8 map(event => this.logResponse(event)),

9);

10 }

11

12 private logResponse(event: HttpResponse<any> | any) {

13 if (event instanceof HttpResponse) {

14 this.statistics.save(event)

15 }

16 return event;

17 }

18 }

Code 5.2: HTTP interceptor to keep track of performance

The visualization of the statistics is presented in the next section.

5.4 User Interface

The goal of the prototype is to demonstrate the use cases covered in this thesis. For each use

case, the prototype provides an interactive view to explore the behavior in action. A toolbar

allows to adjust some parameters.

Figure 5.2: The left side of the toolbar

The controls on the left side of the toolbar allow to switch between the use cases.

Figure 5.3: The right side of the toolbar

5 Prototype User Interface

39

The control in the middle allows to choose a person. By default, all requests are executed from

the perspective of the person John Doe (ID 112). This is the person that was also used for the

queries executed as part of the evaluation. To be able to execute the requests from the

perspective of another person, the control provides an option to switch to the person called Bella

Rempel (ID 41127) that was chosen randomly out of the dataset.

The control on the right side allows to choose the database engine to use for the requests. The

endpoint used to fetch the data depends on this setting. Switching the control updates the current

view of the application automatically with data from the newly selected database.

View of a Use Case

In figure 5.4, the view of use case 3 is presented. On the left side, the results of the query are

listed as a table. On the right side, the performance statistics for the queries of that use case are

listed and the average is calculated for both database systems. The button «Run again» allows

to run the most recent query again.

Figure 5.4: The view of use case 3

View of a Person

The view of a person presents the topics the person likes and the friends of that person. Likes

and friendships that are in common with the logged in user are presented first in the lists and

get highlighted with a green checkmark to visualize it’s a common interest or friend.

5 Prototype User Interface

40

Figure 5.5: The view of a person

On the top right, two buttons provide the options to add or remove a person as friend and to

close the view.

View of a Topic

The view of a topic presents the persons, that like that topic, up to a maximum of 200 persons.

Persons, that are friends with the logged in user are presented first in the list and get highlighted

with a green checkmark to visualize the common friendship.

5 Prototype User Interface

41

Figure 5.6: The view of a topic

On the top right, two buttons provide the options to «Like» respectively «Unlike» the topic and

to close the view.

6 Conclusion and Future Work Conclusion

42

 6

Conclusion and Future Work

6.1 Conclusion 42

6.2 Future Work 42

6.1 Conclusion

The systematic evaluation of the two database management systems MySQL and Neo4j has

shown several interesting and surprising aspects. There is no clear conclusion as to which

system is universally better suited in the context of social web applications. Both systems have

proven to be powerful, stable, and capable of managing and serving a large dataset in that

context.

Depending on the prioritization of the criteria, one or the other system is more convincing. If

only the query performance is considered, it depends strongly on the use case which database

system is more efficient. If other factors such as the complexity of the queries, the cognitive

load produced or the developer convenience are taken into account as well, there is a slight

trend towards Neo4j.

Writing and maintaining database queries has shown to be a tedious and time-consuming task.

It usually requires several iterations of testing and improvement to get a query that delivers the

proper result in an efficient way. Having a small dataset at hand to test and validate the queries

during development is a big help.

For large and complex platforms, it is worth evaluating a combination of the best of both worlds

and choosing a hybrid approach as described in the next section about future work.

6.2 Future Work

In the course of this thesis, a few questions and ideas have come up, which would be very

interesting to explore in a future work:

Unidirectional vs. Bidirectional Relationships

In Neo4j, a relationship is directed but it can be traversed in both directions depending on the

query. A quick test showed that it has an impact on performance. It would be interesting to

explore in-depth how big the impact is and what the alternatives are.

6 Conclusion and Future Work Future Work

43

Caching

Instead of submitting complex queries to a normalized database at runtime, some queries could

be processed in the background and stored in a cache. This would allow runtime queries to be

handled more efficiently and with simpler queries. Use cases 2 and 3 would be good candidates

for such a solution as they don’t need to rely on up-to-date data.

Hybrid Solution

The performance evaluation showed that depending on the use case, both systems can be better

performing. Mixed with the knowledge that Cypher queries are simpler to understand and write,

it would be exciting to evaluate using Neo4j as the main database system but to fall back on a

MySQL server for some use cases. The problem will then be to keep the data up to date in both

database management systems. One possible approach would be to use the MySQL database

only for cached results as mentioned before.

Clustering

Both MySQL and Neo4j offer the ability to combine multiple database servers into a cluster. It

would be exciting to evaluate how this affects performance.

A Source Code

44

A

Source Code

The source code of this project is available as ZIP file and can be downloaded here:

https://gitlab.com/ch-fries/master-thesis-prototype

The structure of the source code

The source code is organized in this structure:

/backend

/dataset

/evaluation

/frontend

/README.md

Explanation

The folder backend contains the source code for the REST API.

The folder dataset contains the generated dataset.

The folder evaluation contains the performance measurement data used for the evaluation.

The folder frontend contains the source code for the web application.

The file README.md explains how to run the project locally.

https://gitlab.com/ch-fries/master-thesis-prototype

References

45

References

[Don81]

Donald D. Chamberlin, et al. A history and evaluation of System R. Communications of

the ACM, 24.10, 1981, pages 632-646.

[Edg70|

Edgar F. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13.6, 1970, pages 377-387.

[Est23]

Esteban Ortiz-Ospina and Max Roser. The rise of social media. Our world in data, 2023.

[Fie00]

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software

Architectures, University of California, Irvine, 2000.

[FR14]

Roy Thomas Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content, IETF, 2014.

[Fri29]

Frigyes Karinthy. Chain-links. Everything is different, 1929, pages 21-26.

[Ian13]

Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases, O’Reilly Media, 2013,

ISBN 978-1-449-35626-2.

[Ken89]

Kent Layton and Martha E. Irwin. Enriching your reading program with databases. The

Reading Teacher, 42.9, 1989, page 724.

[Ren18]

Renzo Angles. The Property Graph Database Model. AMW, 2018.

[Tho88]

Thompson, Richard Bryan. A study of the use of domain key normal form criteria in

database design, page 2-6, 1988.

Referenced Web Resources

46

Referenced Web Resources

[1] DB-Engines: Knowledge Base of Relational and NoSQL Database Management

Systems. https://db-engines.com/en/ranking (accessed on February 24, 2023)

[2] Neo4j Docs: Graph database concepts. https://neo4j.com/docs/getting-started

/appendix/graphdb-concepts/ (accessed March 18, 2023)

[3] Cypher Query Language. https://neo4j.com/developer/cypher/ (accessed March

18, 2023)

[4] Kaggle. https://www.kaggle.com/datasets (accessed April 16, 2023)

[5] Visual Capitalist: The Top 100 Most Valuable Brands in 2022.
https://www.visualcapitalist.com/top-100-most-valuable-brands-in-2022/

(accessed April 28, 2023)

[6] Proxmox Virtual Environment. https://www.proxmox.com/en/proxmox-virtual-

environment/overview (accessed April 14, 2023)

[7] MySQL: System Requirements. https://dev.mysql.com/doc/mysql-monitor/8.0

/en/system-prereqs-reference.html (accessed April 14, 2023)

[8] Neo4j Docs: System Requirements. https://neo4j.com/docs/operations-

manual/current/installation/requirements/ (accessed April 14, 2023)

[9] MySQL Community Downloads. https://dev.mysql.com/downloads/ (accessed July

2, 2023)

[10] Neo4j Download Center. https://neo4j.com/download-center/ (accessed April 14,

2023)

[11] Neo4j Docs: Installation. https://neo4j.com/docs/operations-manual/current

/installation/linux/debian/ (accessed April 14, 2023)

[12] MySQL: WITH (Common Table Expressions) https://dev.mysql.com/doc/refman

/8.0/en/with.html (accessed July 3, 2023)

[13] MySQL: Optimize table command. https://dev.mysql.com/doc/refman/8.0/en

/optimize-table.html (accessed July 2, 2023)

[14] MySQL Workbench. https://www.mysql.com/products/workbench/ (accessed

August 4, 2023)

[15] Neo4j Desktop. https://neo4j.com/docs/desktop-manual/current/ (accessed

March 18, 2023)

[16] Angular. https://angular.io/ (accessed July 21, 2023)

https://db-engines.com/en/ranking
https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/
https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/
https://neo4j.com/developer/cypher/
https://www.kaggle.com/datasets
https://www.visualcapitalist.com/top-100-most-valuable-brands-in-2022/
https://www.proxmox.com/en/proxmox-virtual-environment/overview
https://www.proxmox.com/en/proxmox-virtual-environment/overview
https://dev.mysql.com/doc/mysql-monitor/8.0/en/system-prereqs-reference.html
https://dev.mysql.com/doc/mysql-monitor/8.0/en/system-prereqs-reference.html
https://neo4j.com/docs/operations-manual/current/installation/requirements/
https://neo4j.com/docs/operations-manual/current/installation/requirements/
https://dev.mysql.com/downloads/
https://neo4j.com/download-center/
https://neo4j.com/docs/operations-manual/current/installation/linux/debian/
https://neo4j.com/docs/operations-manual/current/installation/linux/debian/
https://dev.mysql.com/doc/refman/8.0/en/with.html
https://dev.mysql.com/doc/refman/8.0/en/with.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://www.mysql.com/products/workbench/
https://neo4j.com/docs/desktop-manual/current/
https://angular.io/

Referenced Web Resources

47

[17] TypeScript: JavaScript with Syntax for Types. https://www.typescriptlang.org/

(accessed July 22, 2023)

[18] What is Angular? https://angular.io/guide/what-is-angular (cccessed July 22,

2023)

[19] PHP: Hypertext Preprocessor. https://www.php.net/ (accessed July 21, 2023)

[20] Symfony, High Performance PHP Framework for Web Development.

https://symfony.com/ (accessed July 21, 2023)

[21] Doctrine DBAL. https://www.doctrine-project.org/projects/doctrine-dbal

/en/current/reference/introduction.html (accessed July 23, 2023)

[22] Neo4j PHP Client and Driver. https://github.com/neo4j-php/neo4j-php-client

(accessed July 23, 2023)

[23] JavaScript Object Notation (JSON). https://www.json.org/ (accessed July 23, 2023)

https://www.typescriptlang.org/
https://angular.io/guide/what-is-angular
https://www.php.net/
https://symfony.com/
https://www.doctrine-project.org/projects/doctrine-dbal/en/current/reference/introduction.html
https://www.doctrine-project.org/projects/doctrine-dbal/en/current/reference/introduction.html
https://github.com/neo4j-php/neo4j-php-client
https://www.json.org/

	Graph Databases vs. Relational Databases for Social Web Applications
	A Systematic Evaluation

	Abstract
	Preamble
	Acknowledgements
	Notations and Conventions

	Table of Contents
	List of Figures
	List of Tables
	List of Source Code
	1 Introduction
	1.1 Motivation and Goals
	1.2 Use Cases
	1.2.1 List of Friends
	1.2.2 Friends Recommendation Based on Mutual Friends
	1.2.3 Friends Recommendation Based on Several Criteria
	1.2.4 Auto-Suggest for Search Field

	1.3 Organization

	2 Databases
	2.1 Types of Databases
	2.2 Selection Criteria
	2.3 MySQL – Relational Database
	2.3.1 Fundamentals
	2.3.2 Structured Query Language

	2.4 Neo4j – Graph Database
	2.4.1 Fundamentals
	2.4.2 Cypher

	3 Database Implementation
	3.1 Creating a Test Dataset
	3.2 Setup of Database Servers
	3.2.1 MySQL Server Setup
	Create Database User
	Create a Database
	Create Database Tables
	Create Indexes and Foreign Keys
	Allow Remote Access
	Optimize Memory Usage

	3.2.2 Neo4j Server Setup
	Change User Credentials
	Create Database Schema
	Setup APOC
	Allow Remote Access
	Optimize Memory Usage

	3.3 Import Test Data
	3.3.1 Import Data into MySQL Database
	3.3.2 Import Data into Neo4j Database

	3.4 Optimizing Schema and Data
	3.5 Queries for the Use Cases
	3.6 Validating the Queries
	3.7 Automation

	4 Evaluation
	4.1 Evaluation Criteria
	4.1.1 Performance
	4.1.2 Number of Clauses
	4.1.3 Developer Convenience

	4.2 Evaluation
	4.3 Result
	4.3.1 Result of Performance Evaluation
	4.3.2 Result of Number of Clauses Evaluation
	4.3.3 Result of Developer Convenience Evaluation

	4.4 Discussion

	5 Prototype
	5.1 Architecture
	5.2 Technology Stack
	5.3 Implementation
	5.3.1 REST API
	5.3.2 Frontend Application

	5.4 User Interface
	View of a Use Case
	View of a Person
	View of a Topic

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	Unidirectional vs. Bidirectional Relationships
	Caching
	Hybrid Solution
	Clustering

	A Source Code
	References
	Referenced Web Resources

