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Abstract

Decentralization is a very popular topic due to the surge of blockchain technologies which
have permitted to bring the concept in areas where it was previously unbelievable, like
for example in the field of finance. This master thesis presents a proof-of-work architec-
ture and implementation to bring decentralization into the existing LoRa infrastructure.
This is achieved thanks to the development of a new protocol, that we call LoRa-MAC,
which replaces the existing LoRaWAN protocol. This new protocol is built on top of
existing softwares and hardware for convenience. The decentralization aspect of LoRa-
MAC is made possible thanks to the deployment of a smart contract on the Ethereum
blockchain and thanks to the use of asymmetric cryptography which permits to provide
non-repudation. Furthermore, an extension of the project has been developed to demon-
strate the new decentralized use-cases that are now allowed. This extension consists in
the exchange of micropayments between the components of the LoRa-MAC architecture
in a totally decentralized way in order to allow remuneration in crowd-sourced networks.
A comparison of micropayments enabling technologies for the Ethereum blockchain is in
addition realized.

Keywords: LoRa, LoRaWAN, LoRa-MAC, CBOR, COSE, Blockchain, Ethereum, Smart
contract, Micropayment channels, Plasma, OMG Network
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1
Introduction

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3. Notations and Conventions . . . . . . . . . . . . . . . . . . . 2

1.1. Motivation

LoRa is a proprietary technology but uses license-free radio frequencies. Large deploy-
ments of the network are mainly provided by big telecommunication companies which
have a monopoly and represent a single point of failure in the network. Therefore, some
concerns could be made about the security and the confidentiality of such a system.
The new hype about decentralization brings some new hopes for resolving this concerns.
Of course, with these hopes, come new questions. Is it possible to deploy and use a device
in a secure way without using a centralized network ? Is it possible for enthusiasts to
create a network of gateways to compete with the big telecommunication companies ? Is
it possible for the members of such a network to get paid for their participation ?
The master thesis will try to address this interrogations by creating a new MAC routing
protocol on top of the LoRa modulation technique in order to manage the communica-
tions between gateways and end-node devices in a decentralized way. This new protocol,
that we call LoRa-MAC, has the goal to provide a viable solution to replace the existing
LoRaWAN MAC protocol. Thanks to the decentralized aspect of the new LoRa-MAC
protocol, it is possible to foresee new decentralized use-cases for the LoRa technology.

1.2. Goal

The goals of the thesis were to:

1. Learn about the LoRa protocol.
2. Get familiar with the LoRa hardware and software. Besides the LoRa protocol

stack, there are three important pieces of software in a LoRaWAN network: the
firmware executed by the end devices, the packet router ran by the gateways that

1



1.3. Notations and Conventions 2

encapsulates LoRa messages into IP packets and the application servers that receive
and handle the LoRa messages.

3. Learn about compact data format standards for constrained devices such as CBOR
(a compact alternative to JSON) and COSE.

4. Design a LoRa-based MAC protocol with the following features:
a) Basic LoRaWAN features such as device identifiers and messages types (con-

firmed and unconfirmed up and down messages). Upstream packets represent
a communication from an end device to a server and downstream packets rep-
resent a communication from a server to an end device.

b) MAC-layer or transport-layer security. The design focuses on efficiency and
allow digital signatures. Only valid packets should be forwarded in the net-
work.

5. Implement the proposed protocol stack for the LoRa roles: End Device, Packet
Forwarder and Application Server. The protocol should keep the compatibility
with the existing hardware and softwares.

6. Create simple smart-contract(s) to demonstrate the use of the LoRa-MAC proto-
col for decentralized use-cases such as remuneration in crowd-sourced networks or
integration with decentralized blockchain applications.

1.3. Notations and Conventions

• Formatting conventions:
– Abbreviations and acronyms as follows Hypertext Transfer Protocol (HTTP)

for the first usage and HTTP for any further usage;
– All the web pages and the servers are running on localhost.
– Code is formatted as follows:
1 def division(x, y):
2 result = x / y
3 return result

List. 1.1: Example of a Python code

• The work is divided into eight chapters that are formatted in sections and subsec-
tions. Every section or subsection is organized into paragraphs, signaling logical
breaks.

• Figure s, Table s and Listing s are numbered inside a chapter. For example, a
reference to Figure j of Chapter i will be noted Figure i.j.

• As far as gender is concerned, the masculine form is systematically selected due to
simplicity. But, both genders are meant equally.
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2.1. LoRa

Long Range (LoRa) is a proprietary low-power, wide area network, Radio Frequency (RF)
modulation technology [14]. The radio modulation used by LoRa is based on spread-
spectrum modulation techniques derived from the Chirp Spread Spectrum (CSS) tech-
nology [15]. The technology was developed in 2009 by Cycleo of Grenoble in France and
acquired in 2012 by Semtech which is the founding member of the LoRa Alliance. Even
if the technology is patented and thus proprietary, LoRa uses license-free sub-gigahertz
radio frequency bands like 433 MHz, 868 MHz in Europe, 915 MHz in Australia and
North America, between 865 MHz and 867 MHz in India and 923 MHz in Asia. Since
the frequencies are license-free, it is possible for anyone to create private LoRa networks
which are not linked to any operator. This can be done by deploying a gateway to trans-
mit LoRa packets which has the advantage to not require any subscription.
The goal of LoRa is to enable long-range transmissions with low power consumption at
a low cost. The long-range communications can go up to five kilometers in urban areas
and up to 15 kilometers or more in rural areas (line of sight) [14]. The trade-off to this
long-range is the data rate which is comprised between 0.3 kbit/s and 27 kbit/s depending
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2.2. LoRaWAN 4

on the spreading factor [15]. The low power consumption at a low cost permits to have
small battery-operated devices that can last many years.
The technology covers the Physical (PHY) layer of the Open Systems Interconnection
(OSI) model while other technologies and protocols, such as LoRaWAN, cover the upper
layers.

Fig. 2.1.: OSI model of LoRa and LoRaWAN [14]

2.2. LoRaWAN

Long Range Wide Area Network (LoRaWAN) is one of the several protocols that has been
developed to define the upper layers of the LoRa network but it has the advantage to be
maintained by the LoRa Alliance. LoRaWAN covers the Medium Access Control (MAC)
layer of the OSI model. The protocol is mainly used as a network layer protocol for man-
aging communications between Low Power Wide Area Network (LPWAN) gateways and
end-node devices [15]. The end-node devices which are mainly sensors, are asynchronous
and transmit only when they have data available, therefore increasing their battery life.
Thanks to its attributes, the protocol is used in smart cities, industrial monitoring and
agriculture.
To sum up, LoRaWAN defines the communication protocol and the system architecture
of the network, while the LoRa PHY layer enables the long-range communication link.
Therefore, LoRaWAN is responsible for managing the communication frequencies, the
data rates and the power of all the devices. Furthermore, the protocol guarantees the
confidentiality of the communication thanks to the use of symmetric cryptography in order
to provide confidentiality and authenticity. Accordingly, Message Integrity Code (MIC)
and end-to-end encryption of the communication using AES128 are provided. Two keys
are used to provide this functionalities: the Application Key (AppKey) which is used
for data confidentiality and the Network Key (NwkKey) which is used for the message
integrity and the confidentiality [1].
LoRaWAN uses a star topology which implies that the data transmitted by an end-node
device are received by multiple gateways. These gateways then forward the data packets
without inspection to a centralized network server through the Internet and thus partic-
ipate in the Internet of Things (IoT) [15]. The data are then forwarded from the central
network server to the appropriate application server but, this is outside of the scope of the
LoRaWAN specification [1]. When an uplink packet is received by an application server,
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a downlink response packet can be sent back to the end-node by following the same
route as the uplink packet. The following figure shows the just explained architecture of
LoRaWAN.

Fig. 2.2.: A typical LoRaWAN infrastructure [1]

2.3. Deployment options

The LoRa Alliance announces 156 LoRaWAN Network Operators in 171 countries as of
2021 [16]. In many countries, the network is provided by telecommunication / telephone
companies like for example in Switzerland by Swisscom1. On a global level, there exists
also the network developed by The Things Network (TTN). Finally, solutions using the
blockchain such as Helium have emerged.

2.3.1. Telecommunication companies

In many countries, telecommunication companies are the only local solution for users
and companies who want to use LoRaWAN. These companies deploy their own gateways
through the country and sell their coverage to consumers. This kind of network is totally
centralized, making the users totally dependent from the gateways of the telecommuni-
cation company.

2.3.2. The Things Network (TTN)

The TTN2 initiative which was started in 2015 [17] is an open community-based LoRaWAN
network that is partially available in 151 countries based on a community of over 140’000
members and has over 20’000 gateways up and running. It is the world’s largest net-
worked IoT which processes several million of data sets every day, serving millions of
people. The network can be used without commercial or private constraints.
Software developers of TTN develop open source LoRaWAN solutions and provide open
programming tools. In addition, they also manage a global community to create IoT

1https://www.swisscom.ch/en/business/enterprise/offer/iot/lpn.html
2https://www.thethingsnetwork.org/

https://www.swisscom.ch/en/business/enterprise/offer/iot/lpn.html
https://www.thethingsnetwork.org/
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applications and build collaborative IoT networks. Volunteers take on the provision, con-
struction and support of LoRaWAN gateways [18].
Even if the TTN network is mostly free for a personal usage and the community is very
large, this does not make it a decentralized system. In fact, TTN works as follow: users
can deploy their own LoRa gateways and devices to be registered on the TTN web site.
Once a LoRa packet is received by a gateway, it is transferred from this one to the TTN
servers which will either save the packet on their database or transfer the packet to a
server / application owned by the user. The user can consult the packet by login in on
the TTN web site or by accessing it on his server / application. So, to sum up, the gate-
ways are crowd sourced but the architecture / infrastructure of TTN is totally dependent
from the TTN servers, thus making TTN a centralized service. In addition, the keys of
the network are also managed by TTN.

2.3.3. Helium

Helium claims to be a "global, distributed network of Hotspots that create public, long-
range wireless coverage for LoRaWAN-enabled IoT devices" [19]. The network was
founded in 2013 with a mission to make it easier to build connected devices. At the time of
writing, there are 111’702 total hotspots and thousands of ready-to-use devices. Hotspots
registered in the Helium network create The People’s Network. These hotspots produce
and are compensated in HNT, the native cryptocurrency of the Helium blockchain. The
Helium blockchain is a new blockchain built from the ground up to incentive the creation
of decentralized, public wireless networks. This blockchain uses a novel work algorithm
called Proof of Coverage (PoC) that is used to verify that hotspots are located where
they claim to be. Put in another way, PoC tries to verify, on an ongoing basis, that
hotspots are honestly representing their location and the wireless network coverage they
are creating from that location. PoC has been created because the Helium network is a
physical wireless network that succeeds based on the amount of reliable coverage it can
create for users deploying connected devices on it. As such, it requires a work algorithm
that is built for this use-case. The "challenge" is the discrete unit of work for PoC. To
date, there have been 10s of millions of challenges issued and processed by the Helium
blockchain. With each new challenge, the blockchain records more data about the quality
of the network [19].
Like TTN, volunteers of the community can decide to host a gateway. The difference from
TTN resides in the fact that there is no central server to which gateways have to deliver
packets they hear over the radio spectrum. In Helium, users publish lists of interested de-
vices they want to pay for. This list is kept on the blockchain and is constantly updated.
When a gateway receives a LoRa packet, it consults the blockchain to determine where
to route the packet, then it negotiates with the destination server to determine whether
it wants the packet or not. In contrast to the other deployment options, this implies that
participants run their own network server in addition to the application server.
The Helium packet transfer protocol is a deliver first, punish later if needed. Meaning
that gateways with potential packets to deliver will contact the packet owner and ask
the owner if it would like to purchase the packet. The owner can accept the packet in
which case the gateway will expect a future payment to be sent. If this payment is never
received, the gateway has the option to simply mark that server as unfair and refuse to
deliver any future packets to it. The same protocol can work in reverse: if a gateway
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repeatedly delivers fake packets that match real packets the server is interested in, the
server can punish the gateway by refusing to pay for any future packets, on the belief that
they will be fake. After all, the server is able to tell if the full packet is fake by checking
the MIC, which can only be correctly filled in by the real device in question. The ability
to memorize past transgressions is all possible because every server and gateway in the
Helium network has a public identity. Gateways cannot invent new identities due to the
way the onboarding process works. So, there is an incentive not to get a gateway identity
banned by servers interested in purchasing packets.
Helium uses two units of exchange: HNT and Data Credits. Data Credits are bought
by users in order to pay to receive packets. They are created by burning HNT. The He-
lium blockchain rewards hotspots in HNT for providing wireless coverage and verifying
the Helium network. Every epoch, the current consensus group mines approximately 30
blocks on the blockchain. For each block, hotspots perform various types of work and
are awarded. At the end of the epoch, the HNT mined are distributed to hotspots in
proportion to the Data Credits received and the awarded tasks performed.
The subsequent table presents the advantages of Helium in comparison to some of the
telecommunication companies that provide the LoRaWAN network in the US.

Tab. 2.1.: Helium vs telecommunication companies [20]

2.4. Decentralization

As suggested, the master thesis aims at bringing decentralization to the LoRa network
in order to escape from the control of some of the network providers just mentioned. To
achieve this goal, it is first necessary to understand what decentralization is, what are
its benefits and what are the issues with centralization. This is why, this section will
provide an explanation of this concepts and argue why they are important with the help
of examples. Moreover, the section will also suggest a solution to bring decentralization
in the project. The approach is based on blockchain technologies and more precisely on
the Ethereum blockchain.
The informations used for this section have been retrieved mainly from the Ethereum.org
web site [21] and in particular from an article about decentralization on the web site [22].
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2.4.1. What is decentralization ?

"In a decentralized system, no individual or group makes decisions unilaterally. In basic
terms: nobody is in charge, but things still work. Rules without rulers" [22]. The concept
of decentralization is quite complex and there exist several ways to define it. But, it is
nevertheless possible to list what are the desired attributes of decentralized systems:

• Resistance to censorship: it is not possible to unilaterally control what gets
public.

• High security: open systems are built to resist inevitable bad actors.
• Permissionless participation: very basic criteria for participation are defined,

often outside of the control of the system.
• Pseudonymity or anonymity: participants in the system can usually interact

without exposing their identities.
• Community control: everyone who uses, operates, and maintains the system has

a significant input.
• Rules that everyone can see: everyone can audit the system which is open

source. People can copy the rules, modify them, and start new systems.
• Deterministic: given the same input, the rules produce the same output.
• Public records: a history of how the system has operated is stored by multiple

participants.

2.4.2. Why is decentralization important ?

To understand why decentralization is important, it is first needed to know what are
some serious risks that are associated with centralized systems:

• Governance risk: corporate leadership teams might take poor decisions.
• Technical failure: it is more likely to have problems if there is a single point of

failure.
• Economically feasible attacks: fewer targets cost generally less to attack.

Decentralized systems can reduce or eliminate some of the risks inherent to centralized
ones. Here are some examples of how:

• Diversity: by including diverse members and structural elements, a failure is more
unlikely.

• Dispersion: eliminating single points of failure increases the cost of attacks.
• Mutuality: exploitation of other participants’ results for the losses of the exploiter.
• Distribution: making it more difficult to obtain full control of resources and to

take important decisions.
• Integrity: building networks of people who work towards principles of decentral-

ization.
• Resistance: making unwanted behaviors impossible.

Accordingly, the goal of bringing decentralization to the LoRa network is to create a
community of enthusiasts who want to provide the best possible infrastructure because
all the members, not only the central authority, control and benefit from the network.
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2.5. Blockchain as a decentralization solution

Since the invention of blockchain in 2008, the technology has been largely used to bring
decentralization in new areas where it was previously unbelievable. In fact, "a blockchain
enables trusting the output of a system without trusting anyone in particular" [1]. The
technology was initially used to create the Bitcoin which is the first digital currency which
does not depend on a trusted authority or a central server [23]. Afterwards, blockchains
were used in other fields of finance to bring, among other things, decentralized loans.
From there, the doors were open for many other projects in order to bring decentraliza-
tion in the wildest domains. This is why, the blockchain technology has been retained as
the solution to bring the decentralization concept to LoRa.
Before using blockchain technologies, it is mandatory to understand what they are, how
they work and what are their implications. "Blockchains are tamper evident and tamper
resistant digital ledgers implemented in a distributed fashion (i.e., without a central repos-
itory) and usually without a central authority (i.e., a bank, company, or government).
At their basic level, they enable a community of users to record transactions in a shared
ledger within that community, such that under normal operation of the blockchain net-
work no transaction can be changed once published" [2]. The functioning of blockchain
can be described in the following manner: "blockchains are a distributed ledger com-
prised of blocks. Each block is comprised of a block header containing metadata about
the block, and block data containing a set of transactions and other related data. Every
block header (except for the very first block of the blockchain) contains a cryptographic
link to the previous block’s header. Each transaction involves one or more blockchain
network users and a recording of what happened, and it is digitally signed by the user
who submitted the transaction" [2].
Accordingly, one of the largest benefit of the blockchain technology is its decentralization.
However, it is important to note that not all the blockchains are decentralized. Indeed,
blockchain / crypto does not equal decentralization. The fact is that most systems have
aspects of centralization and decentralization. These design concepts can and do co-exist.
One example of blockchain technology that has proven itself as a decentralized system is
Ethereum which is the blockchain technology selected for this project.

2.5.1. Ethereum

"Ethereum is a decentralized, open-source blockchain with smart contract functional-
ity" [24]. Ether (ETH) is the native cryptocurrency of the platform. At the time of
writing, Ethereum uses a Proof of Work (PoW) consensus and is aiming to transit to a
Proof of Stake (PoS) consensus. The smart contract functionality of Ethereum permits to
developers to deploy permanent and immutable computer programs into the blockchain,
with which users can interact. These smart contracts run on the Ethereum Virtual Ma-
chine (EVM) and can be written using the Solidity language. The strength of smart
contracts is that they keep running in all cases even if the servers hosting a front-end
portal to them go down. Furthermore, Ethereum has the advantage of being a trustless
network. This means that there is no counterparty risk (no third party that could violate
a deployed contract).
Ethereum has been selected—for this project—by taking into consideration many argu-
ments. Indeed, first things first, nobody owns Ethereum, even the Ethereum Foundation
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which provides support, but so do tons of other individuals and organizations. Therefore,
Ethereum is built to succeed without centralized control or central points of failure. This
is possible because it operates accordingly to rules set out in the protocol (rules that no
single person or organization has the authority to change). Moreover, the technology is
decentralized in many other important ways: people manage nodes across the world, the
network is built to resist spammers, provide clear consensus, and render attacks econom-
ically non-viable. The activities of an user are not associated with his personal identity.
Furthermore, the users do not need any permission to participate in the network and they
can issue transactions instantly from anywhere only with an Internet connection. Finally,
an important argument in its favor is that Ethereum is the most actively used blockchain
and ETH is the largest cryptocurrency by market capitalization after Bitcoin.
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3.1. Cryptography

Secure communications between parties are very important. Thus, making sure that no
unintended party can read or alter a message in transit is fundamental and involves the
use of multiple cryptographic concepts and algorithms. This section will discuss the cryp-
tographic primitives used in the implementation and the algorithms selected to achieve
secure communications between parties.
When two entities want to send messages between them, there are usually three require-
ments that they want to be fulfilled:

1. Confidentiality: the messages are not made available or disclosed to unauthorized
people.

2. Integrity: the messages have not been accidentally modified during the transmis-
sion.

3. Authentication: the receiver can be sure that the messages originate from the
sender.

11
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In network communications, confidentiality is usually achieved by using encryption. The
algorithm selected to provide encryption in the implementation is Advanced Encryption
Standard (AES). To ensure integrity and authentication, there are various ways that can
be employed. Digital signatures will be used for this purpose because—for this project—
it is important to provide non-repudation in addition to integrity and authentication.
The reason for the need of non-repudation and the selection of digital signatures will be
discussed in section 4.1. For now, it is just needed to know that the algorithm selected
for this purpose is Elliptic Curve Digital Signature Algorithm (ECDSA).
The algorithms described in this section will require keys for their usage. Elliptic-
curve keys have been chosen over non elliptic-curve keys because Elliptic-curve cryp-
tography (ECC) allows to use smaller keys to provide an equivalent level of security to
non-EC cryptography. "ECC is an approach to public-key cryptography based on the
algebraic structure of elliptic curves over finite fields" [25]. There exist ECC versions of
the famous cryptographic algorithms which permit to Elliptic curves to be used for key
agreement, digital signatures, pseudo-random generators and other tasks. Furthermore,
Elliptic curves can even be used indirectly for encryption by combining the key agreement
with a symmetric encryption scheme [25].

3.1.1. ECDH

Elliptic-curve Diffie-Hellman (ECDH) is a variant of the Diffie–Hellman protocol that
uses elliptic-curve cryptography. "It is a key agreement protocol that allows two parties,
each having an elliptic-curve public-private key pair, to establish a shared secret over an
insecure channel. This shared secret may be directly used as a key, or to derive another
key. The key, or the derived key, can then be used to encrypt subsequent communications
using a symmetric-key cipher" [26].
To generate the shared secret, a party needs to use his own private key and the public key
of the other party. By doing this process, both parties are, at the end, in the possession
of the same shared secret.

3.1.2. HKDF

"HKDF is a simple Key Derivation Function (KDF) based on HMAC message authenti-
cation code. The main approach HKDF follows is the "extract-then-expand" paradigm,
where the KDF logically consists of two modules: the first stage takes the input keying
material and "extracts" from it a fixed-length pseudorandom key, and then the second
stage "expands" this key into several additional pseudorandom keys (the output of the
KDF)" [27]. Among other usages, HKDF permits to convert (normalize) shared secrets
exchanged via Diffie–Hellman or ECDH into key material suitable for a utilization in
encryption, integrity checking or authentication.

3.1.3. AES

"The Advanced Encryption Standard (AES), also known by its original name Rijndael
is a specification for the encryption of electronic data established by the U.S. National
Institute of Standards and Technology (NIST) in 2001." AES is a symmetric-key algo-
rithm which means that the same key is used for both encryption and decryption of the
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data. "AES is available in many different encryption packages, and is the first (and only)
publicly accessible cipher approved by the U.S. National Security Agency (NSA) for top
secret information when used in an NSA approved cryptographic module" [28].

3.1.4. ECDSA

"Elliptic Curve Digital Signature Algorithm (ECDSA) offers a variant of the Digital
Signature Algorithm (DSA) which uses elliptic curve cryptography" [29]. The algorithm
uses an elliptic-curve key pair consisting of a public key and a private key. The private
key is used to generate a digital signature of a content, and such a signature can be
verified only by using the corresponding public key. Digital signatures permit to provide
authentication, integrity and especially non-repudiation [30].
"As with elliptic-curve cryptography in general, the bit size of the public key believed to
be needed for ECDSA is about twice the size of the security level, in bits. For example,
at a security level of 80 bits, meaning an attacker requires a maximum of about 280

operations to find the private key, the size of an ECDSA private key would be 160 bits,
whereas the size of a DSA private key is at least 1024 bits. On the other hand, the
signature size is the same for both DSA and ECDSA: approximately 4t bits, where t
is the security level measured in bits, that is, about 320 bits for a security level of 80
bits" [29].

3.1.5. SHA

"The Secure Hash Algorithms (SHA) are a family of cryptographic hash functions pub-
lished by the NIST as a U.S. Federal Information Processing Standard (FIPS)" [31].
"A Cryptographic Hash Function (CHF) is a mathematical algorithm that maps data
of arbitrary size (often called the "message") to a bit array of a fixed size (the "hash
value", "hash", or "message digest"). It is a one-way function, that is, a function which
is practically infeasible to invert or reverse the computation" [32].
The number that is used after the SHA name as for example SHA256, indicates that for
any input passed to the SHA algorithm, the output has a fixed length of 256 bits.

3.2. CBOR

Concise Binary Object Representation (CBOR) is "a binary data serialization format
loosely based on JSON. Like JSON, it allows the transmission of data objects that contain
name-value pairs, but in a more concise manner" [33]. Because of the more compact
representation which results in smaller message size, it is sometimes used instead of JSON
in constrained environments. This characteristic permits to increase the processing and
transfer speeds but at the cost of human readability. CBOR is defined in IETF RFC
8949 [3]. Among other usages, it is the recommended data serialization layer for the
Constrained Application Protocol (CoAP) IoT protocol suite and the data format on
which CBOR Object Signing and Encryption (COSE) messages are based. CBOR has
been developed due to an increased focus on small, constrained devices that make up the
IoT. Among other advantages, CBOR uses a schema-free decoder.
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3.3. COSE

CBOR Object Signing and Encryption (COSE) is a data format for concise represen-
tations of small messages and is described in RFC 8152 [4]. COSE messages can be
encrypted, MAC’ed and signed. In fact, COSE describes how to create and process sig-
natures, Message Authentication Code (MAC) operations, and encryption using CBOR
for serialization. In addition, it describes a representation for cryptographic keys. Like
CBOR, it is as well a more lightweight alternative to an existing solution, in this case,
Javascript Object Signing and Encryption (JOSE). Since COSE is based on CBOR, it is
a data format designed for small code size and small message size. In summary, COSE
permits to have basic security services defined for the CBOR data format.
The basic structure of a COSE message consists of two information parts and the pay-
load. The protected header field of the message contains information that needs to be
protected. This information is taken into account during the encryption, calculation of
the MAC or the signature. The unprotected header contains some information that is
not protected by the cryptographic algorithms. The last element is the payload which is
protected by the cryptographic algorithms.

Fig. 3.1.: The basic COSE structure [34]

There are 6 different types of COSE messages [34]:
1. Encrypt0: an encrypted COSE message with a single recipient.
2. Encrypt: an encrypted COSE message that has multiple recipients.
3. MAC0: an authenticated COSE message with one recipient.
4. MAC: an authenticated COSE message that has multiple recipients.
5. Sign1: a signed COSE message with a single signature.
6. Sign: a COSE message that has been signed by multiple entities.

As it will be described later in the thesis, one of the goal of the project is to give the
ability to the gateways to verify the digital signatures of the messages they receive in order
to transmit only valid messages. This property needs to be respected in addtion to the
encryption of the payload. This can be achieved on the sender side only by encrypting first
the payload and then by signing the ciphertext (encrypt-then-sign). In fact, by doing the
inverse (signing first the payload and then encrypting it along with the signature (sign-
then-encrypt)), the gateway should also be in the possession of the symmetric key in
addition to the public key. However, to guarantee the confidentiality between the sender
and the receiver, the symmetric key used to encrypt should only be in the possession of
the sender and the receiver, and not the gateway. Thus, sign-then-encrypt is not feasible
and encrypt-then-sign had to be selected.
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Accordingly, the payload needs to be first encrypted and then signed. For this purpose,
the COSE_Encrypt0 encryption structure is used for the encryption process because the
payload will be accessed only by a single recipient.

Fig. 3.2.: The COSE_Encrypt0 structure [34]

Once the COSE_Encrypt0 message has been created, a signature has to be appended to
it. This cannot be done by simply passing the result of the COSE_Encrypt0 message
as plaintext to a COSE_Sign1 message. In fact, this would result in having duplicated
COSE elements and thus generating longer than needed messages. This element is even
more important since LoRa is designed for transmitting messages as short as possible.

Fig. 3.3.: The COSE_Sign1 structure [34]

Therefore, in order to avoid to have some duplicated COSE elements, the COSE_Sign1
procedure cannot be applied. On the opposite, a COSE_CounterSignature needs to be
appended to the existing COSE message. Unfortunately, COSE_CounterSignature is not
already a final standard and is not described in RFC 8152 [4]. Instead, it is defined in the
Internet-Draft COSE_CounterSign [5]. A countersignature is normally used as a second
signature that confirms a primary signature. Thus, applying a COSE_CounterSignature
to either a COSE_Signature or a COSE_Sign1 object match this traditional use-case.
But, the Internet-Draft extends the context of a countersignature to allow it to be ap-
plied to all of the security structures defined previously. It is important to note that
the countersignature needs to be considered as a separate operation even if it is ap-
plied by the same user who produced the original COSE message. In this project, the
COSE_CounterSignature is appended to a COSE_Encrypt0 message. This is done by
adding the COSE_CounterSignature structure inside the unprotected part of the header
of the COSE_Encrypt0 message, as it is shown in the following listing.
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1 COSE_Encrypt0(
2 [
3 protected {
4 alg : A128GCM,
5 iv : ... ,
6 reserved : header
7 },
8 unprotected {
9 kid : ... ,

10 COSE_CounterSignature : [
11 protected {
12 alg : Es256
13 },
14 unprotected {
15 kid : ... ,
16 },
17 signature
18 ]
19 },
20 ciphertext
21 ]
22 )

List. 3.1: COSE_Encrypt0 message containing a COSE_CounterSignature

The COSE_CounterSignature structure is almost the same as a COSE_Sign1 structure
except that it does not contain a payload field since this one is already present in the COSE
message to which it is appended. The signature field of the COSE_CounterSignature
structure is computed over a well-defined byte string called the Countersign_structure
which is a CBOR array. The fields of this Countersign_structure are in order [5]:

1. A context text string identifying the context of the signature. In this case, the
context text string is "CounterSignature".

2. The protected attributes from the target structure encoded in a byte string type.
3. The protected attributes from the countersignature structure encoded in a byte

string type.
4. The externally supplied data from the application, if any, encoded in a byte string

type.
5. The payload to be signed encoded in a byte string type.
6. An array of all the byte string fields after the second if there are more than two

byte string fields in the target structure.
1 Countersign_structure = [
2 context : "CounterSignature" / "CounterSignature0" /
3 "CounterSignatureV2" / "CounterSignature0V2" /,
4 body_protected : empty_or_serialized_map,
5 ? sign_protected : empty_or_serialized_map,
6 external_aad : bstr,
7 payload : bstr,
8 ? other_fields : [ + bstr ]
9 ]

List. 3.2: CDDL fragment describing the Countersign_structure [5]
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Once the Countersign_structure has been created and encoded to a CBOR array using
the CBOR tag 11, it is passed as parameter along with a private key to the signature
creation algorithm. This result in the signature field of the COSE_CounterSignature
structure.

3.4. UDP Packet Forwarder

The program that we call the UDP Packet Forwarder is in fact the LoRa network packet
forwarder project which is "a program running on the host of a LoRa gateway that for-
wards RF packets received by the concentrator to a server through a IP / UDP link, and
emits RF packets that are sent by the server" [35]. The source code can be found on
GitHub1. Accordingly, the UDP Packet Forwarder can transmit either uplink packets (ra-
dio packets received by the gateway, with metadata added by the gateway, forwarded to
the server) or downlink packets (packets generated by the server, with additional meta-
data, to be transmitted by the gateway on the radio channel). The packet forwarder
program has been developed by Semtech and—for this project—is running on a Rasp-
berry Pi 3 Model B2 with a RAK831 LPWAN Gateway Concentrator Module3 mounted
on top communicating through SPI. The RAK831 concentrator uses the Semtech SX1301
chip and is able to receive up to 8 LoRa packets simultaneously. Additionally, it can send
with different spreading factors on different channels. The concentrator acts as the radio
communication module and is the central piece for receiving and transmitting LoRa radio
messages. Multiple antennas with the correct frequency for the LoRa radio have been
tested. A detailed comparison of these antennas can be found in section 6.3.

Fig. 3.4.: System schematic of the UDP Packet Forwarder [35]

The server to which the UDP Packet Forwarder transmits the packets can be deployed
remotely or on the same host like in the case of this project. To configure the packet

1https://github.com/Lora-net/packet_forwarder
2https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
3https://store.rakwireless.com/products/rak831-gateway-module

https://github.com/Lora-net/packet_forwarder
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://store.rakwireless.com/products/rak831-gateway-module
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forwarder, a file called global_conf.json must be provided in the lora_pkt_fwd direc-
tory. It is important to use the configuration file that fits with the platform, region and
features needed.
The protocol followed by the packet forwarder to transmit an upstream packet to a server
is described by the following sequence diagram.

Fig. 3.5.: Sequence diagram for the upstream protocol of the packet forwarder [35]

The JSON payload in the PUSH_DATA contains all the major informations about a
packet, including, among other things, the time, the frequency, the size of the payload
and the payload.

1 {"rxpk":[
2 {
3 "tmst" : 1525043316,
4 "chan" : 5,
5 "rfch" : 0,
6 "freq" : 867.500000,
7 "stat" : 1,
8 "modu" : "LORA",
9 "datr" : "SF12BW125",

10 "codr" : "4/7",
11 "lsnr" : 5.8,
12 "rssi" : -15,
13 "size" : 5,
14 "data" : "aGVsbG8="
15 }
16 ]}

List. 3.3: Example of a JSON payload in a PUSH_DATA

The downstream protocol that a server has to follow to transmit a UDP packet back to
the packet forwarder which will then emit it through LoRa is described in the underneath
sequence diagram.
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Fig. 3.6.: Sequence diagram for the downstream protocol of the packet forwarder [35]

The JSON payload in the PULL_RESP has to follow the same structure as the JSON
payload in a PUSH_DATA packet.
The packet forwarder and the Raspberry Pi 3 have been selected because—for this
project—it is important to use standard and common components in order to keep the
compatibility with existing hardware and softwares used in the LoRaWAN protocol.

3.5. LoPy and MicroPython

A LoPy is a compact MicroPython enabled development board commercialized by Pycom.
The model used—for this project—is a LoPy44 which is a quadruple network board (LoRa,
Sigfox, WiFi, Bluetooth). The LoPy4 is equipped with the Espressif ESP32 chipset and
the Semtech LoRa transceiver SX1276. It can act as a LoRa nano gateway and a multi-
bearer development platform suitable for all LoRa and Sigfox networks around the world.
One of the main advantage of the LoPy4 is that it can be configured in raw LoRa mode to
send packets directly between LoRa compatible devices. Another advantage is its ultra-
low power usage. To connect a LoPy via USB to a computer, it is possible to mount
it on an expansion board [6]. Before using a LoPy, it is recommended to first upgrade
its firmware to the latest update. A getting started guide can be found on the Pycom
documentation [36].

4https://pycom.io/product/lopy4/

https://pycom.io/product/lopy4/
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Fig. 3.7.: The LoPy4 [6]

The LoPys are programmable with the MicroPython programming language and the
Pymark plugins for fast IoT application development and easy programming in-field. Mi-
croPython is a software implementation of a programming language largely compatible
with Python 3, written in C, that is optimized to run on a microcontroller [37]. Mi-
croPython consists in a full Python compiler and runtime. The user can either access
it through an interactive prompt (the REPL) to execute supported commands immedi-
ately or by uploading MicroPython files (.py files) on the microcontroller. A selection of
core Python libraries are included in MicroPython. Additionaly, MicroPython includes
modules which give the programmer access to low-level hardware. A certain number of
MicroPython libraries including a LoRa library and a Serial library, have been developed
by Pycom in order to be used on the LoPys.

3.6. Asynchronous programming

Since the project aims to create an architecture / infrastructure with interactions between
multiple components, it is important to develop this components using asynchronous, non-
blocking programming. Asynchronous programming is a style of concurrent programming
which means making many things at once. The way to do it is by using the processor at
its maximum by liberating it while slower tasks are taking place. In fact, tasks release the
CPU during waiting periods so that other tasks can use it. This permits to asynchronous
code to wait until a response to a request is returned before it tries to do anything else
while some other code could be executed in the meantime [7].
Asyncio is a Python library to write concurrent code using the async / await syntax.
The library is used as a foundation for multiple Python asynchronous frameworks that
provide for example high-performance network and web-servers, database connection li-
braries, distributed task queues, etc [38].
In JavaScript, there are three main types of asynchronous code style: callbacks, promises
and finally, async functions and the await keyword which have been added in ECMAScript
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2017 [39]. The JavaScript code developed for this project will use the last type of asyn-
chronous code style which basically acts as syntactic sugar on top of promises, making
asynchronous code easier to write and to read afterwards [39].

3.7. React

"React (also known as React.js or ReactJS) is a free and open-source front-end JavaScript
library for building user interfaces or UI components. It is maintained by Facebook and a
community of individual developers and companies" [40]. Each web page developed with
React can be implemented in its own component. A component can be, for example, a
.jsx file which contains both JavaScript and HTML code inside of it. To define the style
of one or multiple components, it is possible to put the Cascading Style Sheet (CSS) code
inside a separated CSS file.
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4.1. Overview

LoRaWAN security model provides confidentiality and authenticity but does not pro-
vide non-repudiation. This makes it unsuitable for some decentralized use-cases such
as remuneration in crowd-sourced networks or integration with decentralized blockchain
applications.
Accordingly, one of the goal of the project is to add non-repudiation in addition to au-
thentication to the LoRa network. Authentication has been defined in chapter 3.1 and
permits to ensure to the receiver that the messages originates from the sender. Non-
repudation on the other hand, permits to ensure to a third party that the message really
originates from the sender.
As shown in Tab. 4.1, non-repudation can be achieved using asymmetric keys and digital
signatures instead of symmetric keys and MAC (Message Authentication Code) which
are actually used in LoRaWAN. In addition, asymmetric cryptography can also provide
confidentiality by using for example HKDF, which thanks to the private key of the sender
and the public key of the receiver can generate a symmetric key. Using asymmetric cryp-
tography and digital signatures in the LoRa network is possible only by building a new
MAC protocol that replaces the existing LoRaWAN protocol. This new protocol, that
we call LoRa-MAC, is going to be described in more details in this chapter.
Thanks to the fact that LoRa will now have a MAC protocol that uses asymmetric cryp-
tography, it is possible to imagine a fully decentralized version of LoRa communications.
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In fact, combining this new property with the use of blockchain will permit to go even
further in the decentralization aspect than Helium. It will, for example, be possible for
gateways to verify that they forward only valid LoRa packets from which they will really
be paid and, it will be possible for servers to ensure in advance that they only pay for valid
packets. As with Helium, the users of LoRa-MAC will have to run their own network
server in addition to the application server.

Security Goal Cryptographic primitive
Hash MAC Digital signature

Integrity X X X
Authentication × X X
Non-repudation × × X
Kind of keys None Symmetric keys Asymmetric keys

Tab. 4.1.: Cryptographic primitives [7]

4.2. LoRa-MAC protocol

4.2.1. Protocol architecture

Fig. 4.1.: The LoRa-MAC protocol architecture
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This subsection will analyze the architecture of the LoRa-MAC protocol shown in Fig. 4.1.
The architecture of the protocol is divided into four components: the End Device, the
Gateway, the Blockchain and the Server. The End Device and the Server need to generate
a new set of public-private key pair each (DEVpub and DEVpriv on the End Device and
SERVpub and SERVpriv on the Server). Each private key which is 256 bits long, is
generated from an elliptic curve and must be kept secret on the device that generated it.
The two public keys need to be provided on the Blockchain and exchanged between both
entities. Furthermore, the address of the Server needs to be provided on the Blockchain
as well. The End Device and the Server have to share a secret / symmetric key in order
to encrypt the payload of the messages they will be sending to each other. This secret
key S is generated on each side by applying ECDH on the DEVpriv and the SERVpub

on the End Device side and by applying ECDH on the SERVpriv and DEVpub on the
Server side. Then, each side needs to normalize the symmetric key S by applying HKDF
to it. This last step produces the final secret / symmetric key used for encrypting and
decrypting the payload of the LoRa-MAC messages.
A new communication between both ends always starts by the End Device wanting to
send a packet to the Server. In fact, the End Device is asynchronous and transmits
data only when there are some available. Thus, it is impossible for the Server to send a
packet to the End Device without receiving a packet first. This mechanism permits to
save battery life on the end devices and is imperative for the goal of LoRa to provide a
wide-area network for low-power consumption devices.
The End Device generates a new packet by first encrypting the payload of the message
using the AES algorithm and the secret / symmetric key. The packet is then signed
by using the ECDSA algorithm and the private key of the component. The signature
produced is appended to the packet. A more detailed explanation of the content and the
creation of a packet will be explained in the following subsections.
The packet generated on the End Device is then sent using the LoRa technology to
the Gateway. The latter gets the DEVpub of this End Device and the address of the
corresponding server on the Blockchain. The Gateway then verifies the validity of the
signature of the packet by using the DEVpub. If the signature of the packet is valid, the
packet is forwarded to the Server.
On reception of the packet, the Server verifies its signature and if it is valid, it is decrypted
in order to get its content. The Server can then generate a response packet by encrypting
the content of the response message thanks to the use of AES and the secret / symmetric
key. The packet is then signed by using ECDSA and the SERVpriv key. Afterwards, the
packet is sent to the Gateway.
The Gateway verifies again the validity of the received packet. This time, the SERVpub

key is requested to the Blockchain. If the signature of the packet is valid, the packet is
sent to the End Device by using the LoRa technology.
The End Device verifies the signature of the packet by using the public key of the Server.
Afterwards, if the signature is valid, the End Device can decrypt the packet by using the
secret / symmetric key in order to obtain the payload.
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4.2.2. Message structure

A message is comprised of three elements: the Header, the Ciphertext and the Signature.

Message Header Ciphertext Signature
Header MType Counter (Nonce) Device Address
Ciphertext Payload

Tab. 4.2.: Message structure

The Header is itself composed of three elements: the message type (MType), the Counter
and the device address. The Counter is used as a nonce to ensure that each message
sent by a device is unique. The device address represents either the address of an end
device or the address of a server. Finally, the message type is a binary number with the
following meaning.

MType Meaning
0011 DataConfirmedUp
0100 DataUnconfirmedUp
0101 DataConfirmedDown
0110 DataUnconfirmedUp
0111 ACKUp
1000 ACKDown

Tab. 4.3.: Message type (MType)

• DataConfirmedUp is used for a message that is sent from an end device to a
server and for which the end device is waiting for a response from the server.

• DataUnconfirmedUp is used for a message that is sent from an end device to a
server and for which the end device is not waiting for a response from the server.

• DataConfirmedDown is used for a message that is sent from a server to an end
device and for which the server is waiting for a response from the end device.

• DataUnconfirmedUp is used for a message that is sent from a server to an end
device and for which the server is not waiting for a response from the end device.

• ACKUp is used for an acknowledgment message sent from an end device to a
server.

• ACKDown is used for an acknowledgment message sent from a server to an end
device.

The Ciphertext is the Payload encrypted by using the AES algorithm with the se-
cret / symmetric key.
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4.2.3. Packet structure

The packets sent between an end devices and a server are in reality COSE_Encrypt0
messages to which a COSE_CounterSignature structure is appended in the unprotected
part of the header.
The protected field of the COSE_Encrypt0 header contains the name of the algorithm
used for the encryption, the Initialization Vector (IV) value and a reserved section which
contains the header of the message structure. The unprotect field of the COSE_Encrypt0
header contains the Key Identifier (KID) and the COSE_CounterSignature structure.
The KID value is used to give a hint about which key to use. Finally, the COSE_Encrypt0
message contains the Ciphertext.
The COSE_CounterSignature structure is divided between the protected part which
contains the name of the algorithm used to generate the signature, the unprotected part
which contains the KID and lastly, the signature itself.
The algorithm used for the encryption of the payload is A128GCM which stands for AES-
GCM mode with a 128 bits key. The algorithm used to generate the signature is ES256
which means ECDSA with SHA256.

1 COSE_Encrypt0(
2 [
3 protected {
4 alg : A128GCM,
5 iv : ... ,
6 reserved : header
7 },
8 unprotected {
9 kid : ... ,

10 COSE_CounterSignature : [
11 protected {
12 alg : Es256
13 },
14 unprotected {
15 kid : ... ,
16 },
17 signature
18 ]
19 },
20 ciphertext
21 ]
22 )

List. 4.1: Final COSE_Encrypt0 message

4.2.4. Blockchain

For each new End Device created by a user, the Server has to register it on the Blockchain.
This is done by calling a smart contract on the Blockchain from the Server in order to
store the address and the public key of the End Device and the address of the Server. In
addition, the Server has to register only once its own public key on the smart contract
as well.
As explained in section 2.5.1, the blockchain technology selected—for this project—is
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Ethereum. Thus, a smart contract has been written using the default Ethereum program-
ming language, Solidity. The smart contract has been deployed on the Rinkeby Test Net-
work and is accessible at the address: 0x4a9fF7c806231fF7d4763c1e83E8B131467adE611.
The smart contract will be discussed in more details in chapter 5.5.

4.3. Remuneration using Micropayments

One of the goal of the master thesis was to develop a decentralized use-case in order
to show some of the potential of the new created infrastructure, LoRa-MAC. The de-
centralized solution that has been explored as an extension is about remuneration in
crowd-sourced networks thanks to the use of micropayments. The final goal of this Mi-
cropayment extension is to give the ability to everyone to deploy their own gateway and
to get rewarded for transferring messages in the LoRa-MAC protocol.
The extension is focused about micropayments because, if the developed solution wants to
stay competitive against other deployment options presented in section 2.3 while keeping
its decentralization advantage, the cost of transferring a packet in the system should be
really small, in the order of a few cents.
The major difficulty that surround micropayments are the fees. Indeed, it is challenging
to transfer a few cents between two wallets without having to pay more in fees than
the actual amount transferred. Furthermore, this is especially the case on the Ethereum
blockchain due to its raising popularity which has led to an explosion in the transaction
fees called gas. "Gas is a unit of account within the EVM used in the calculation of a
transaction fee, which is the amount of ETH a transaction’s sender must pay to the miner
who includes the transaction in the blockchain" [24].
As the number of people using Ethereum has grown substantially, the blockchain has
reached certain capacity limitations. This is why, a need for scaling solutions has grown.
The main goal of this scaling solutions is to increase the transaction speed (faster final-
ity), and the transaction throughput (high number of transactions per second), without
sacrificing decentralization or security. Conceptually, there are two categories of scaling
solutions: on-chain and off-chain scaling.
On-chain scaling requires changes to the Ethereum protocol (layer 1 Mainnet). For this
solution of scaling, the main focus is currently on sharding which is the process of split-
ting a database horizontally to spread the load [41]. Unfortunately, on-chain scaling is
an active field of research and thus, other solutions need to be explored.
Off-chain scaling solutions are implemented separately from the layer 1 Mainnet. They
require no changes to the existing Ethereum protocol. This is why, they are called layer
2 solutions. The main principle of most layer 2 solutions is to submit transaction to some
layer 2 nodes instead of submitting them directly on the layer 1. The layer 2 instance
then batches the transactions into groups before anchoring them on the layer 1, after
which they are secured by the layer 1 and cannot be altered [41]. Tab. 4.4 gives an overall
comparison of various Ethereum layer 2 scaling solutions. Since the main challenge of
the Micropayment extension is about transaction fees as explained previously, the line
of Tab. 4.4 comparing the costs of transaction is the most relevant. There are only two
solutions that receive the mention "very low" for the cost of transaction: state channels
and plasma. Thus, this two solutions have been explored in more details and have then

1https://rinkeby.etherscan.io/address/0x4a9fF7c806231fF7d4763c1e83E8B131467adE61

https://rinkeby.etherscan.io/address/0x4a9fF7c806231fF7d4763c1e83E8B131467adE61
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been implemented in order to be able to compare them in full knowledge of the facts.
The other solutions of layer 2 scaling will not be discussed in more details in the thesis
but a starting point to have some more detailed informations about them can be found
on the Ethereum.org web site [41].

Tab. 4.4.: Ethereum layer 2 scaling solutions [42]

4.3.1. Ethereum layer 2 scaling solutions

State channels - micropayment channels

To take part in a channel, participants have to lock a portion of Ethereum’s state, like
an ETH deposit for example, into a multisig smart contract which is a type of contract
that requires the signature (and therefore the agreement) of multiple private keys to
be executed. Locking a portion of Ethereum’s state is the first transaction and opens
up the channel. The participants can then transact quickly and freely off-chain. When
the interactions are terminated, a final on-chain transaction is submitted, unlocking the
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Ethereum’s state. There are two types of channels currently: state channels and payment
channels [41].
State channels use multisig contracts that permit to participants to transact quickly and
freely x number of times off-chain while only submitting two on-chain transactions to
the Ethereum layer 1 network. This allows for extremely high transaction throughput by
minimizing network congestion, fees, and delays [41]. Payment channels are a simplified
version of state channels that only deals with payments (e.g. ETH transfers). They permit
off-chain transfers between two participants, as long as the net sum of their transfers does
not exceed the deposited token amount [41].
Micropayment channels are an example implementation of payment channels. They use
cryptographic signatures that can be sent off-chain (e.g. via email) to make repeated
transfers of ETH between the same parties secure, instantaneous, and without transaction
fees. The process can be seen as similar to writing checks [43].
The case of a simple unidirectional micropayment channel between two parties like the
one this project will be using is now described. More informations about micropayment
channels can be found from the Solidity documentation [43]. Imagine Alice wants to send
a quantity of ETH to Bob, i.e. Alice is the sender and Bob is the recipient. Alice and
Bob use signatures to authorize transactions, which is possible thanks to smart contracts
on Ethereum. Alice has to build a smart contract that lets her transmit ETH to Bob.
The smart contract works as follow:

1. Alice deploys the smart contract, attaching enough ETH to cover the payments
that will be made. This "opens" the payment channel. Furthermore, Alice has to
specify the intended recipient and a maximum duration for the channel to exist.

2. Alice signs messages with her private key in order to specify how much ETH is
owed to the recipient. For this task, Alice does not need to interact with the
Ethereum network. The process can be done completely offline and is repeated for
each payment. Each message includes the following informations:

• The address of the smart contract which is used to prevent cross-contract
replay attacks.

• The total amount of ETH that is owed to the recipient so far.
The message is then hashed and signed.

3. Alice sends the cryptographically signed message to Bob. The message does not
need to be kept secret, and the mechanism for sending it does not matter.

4. Bob claims its payments by presenting the last signed message of Alice to the smart
contract which verifies the authenticity of the message (the message has to contain
a valid signature from the sender which matches the given parameters) and then
releases the funds to their owners. This "closes" the payment channel and destroys
the smart contract. A payment channel is closed only once, at the end of a series of
transfers. Because of this, only one of the messages sent is redeemed. This is why
each message specifies a cumulative total amount of ETH owed, rather than the
amount of the individual micropayment. A recipient naturally chooses to redeem
the most recent message because it has the highest total. It is critical for Bob to
perform his own verification for each message. Otherwise, there is no guarantee
that he will be able to get paid in the end.
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Thus, a recipient should verify each message using the following process:
• Verify that the contact address in the message matches the payment channel.
• Verify that the new total is the expected amount.
• Verify that the new total does not exceed the amount of ETH stored in the

smart contract.
• Verify that the signature is valid and comes from the payment channel sender.

Closing the contract before the expiration is only possible for the recipient because
if the sender was allowed to do it, he could provide a message with a lower amount
and cheat the recipient out of what he is owed.

Only steps 1 and 4 require Ethereum transactions. This means that only two transactions
are required to support any number of transfers.
Bob is guaranteed to receive his funds because the smart contract escrows the ETH and
honors a valid signed message. The smart contract also has a determined expiration.
Therefore, Alice is guaranteed to eventually recover her funds even if the recipient refuses
to close the channel. It is up to the participants in a payment channel to decide how
long to keep it open. It is important for Bob to close the channel before the expiration is
reached otherwise he can no longer receive any ETH.

Plasma - OMG Network

Plasma refers to a framework co-conceived by the creator of Ethereum, Vitalik Buterin,
that allows the creation of separate blockchains which are anchored to the main Ethereum
chain. This separated blockchains are usually called child chains because they are essen-
tially smaller copies of the Ethereum Mainnet [41]. The offload of bandwidth from the
parent chains is achieved by performing transactions on the child chain instead of on the
Ethereum main chain. This, relieves pressure on the Ethereum blockchain by condensing
all the transactions that happen across multiple child chain blocks into a single, validated
Merkle proof that is submitted to the root chain. Therefore, these child chains occasion-
ally write a fingerprint of their state to the root chain. Users can enter the child chain
through a smart contract. Thus, interactions with the Ethereum root chain are only
required for depositing funds to the child chain or exiting funds from the child chain back
to the root chain [8]. The plasma chains can operate at a different speed and under a
different consensus mechanism than the main chain. Furthermore, each child chain has its
own mechanism for block validation. If a user wishes to exit a child chain, a certain “chal-
lenge period” is required, in which any potential attempts of fraud can be prevented [9].
There exist different implementations of plasma and one of them is the OMG Network.
The thesis has selected this implementation of plasma as one of the solution to perform
micropayments because at the time of the implementation, OMG Network was the most
popular plasma solution.
Initially called OmiseGO (OMG) upon launch in 2017, "the OMG Network creates a
value transfer layer on top of Ethereum that bundles together Ethereum transactions and
validates them through a speed-optimized child chain before sending them back to the
Ethereum blockchain for confirmation. The OMG Network is able to process thousands of
transactions per second, and can reduce the costs of operating on Ethereum by one third.
The OMG Network’s native OMG token can be used to pay for transaction fees" [10].
The protocol of OMG Network uses an updated version of plasma, called More Viable
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Plasma (MoreVP), to significantly increase transaction throughput. More specifically,
the OMG Network works by bundling transactions together, compressing them into one
transaction, and verifying them on the OMG Network’s child chain. The child chain then
returns confirmed transactions to the Ethereum main chain in order to guarantee the
confirmations on the blockchain. This bundling technique enables the OMG Network to
process thousands of transactions per second. Transaction costs are largely inferior to
what they would cost on Ethereum because gas fees are paid on the bundled, compressed
transaction instead of each individual transaction [10].
The OMG Network architecture consists of three components interacting together [44]:

• Deployed on the Ethereum network, the PlasmaFramework smart contract can
be seen as a top-level contract containing other smart contract level functionalities
like deposits, exits, and the receipts of block transactions from the child chain.

• The OMG Network child chain is controlled by a single block producing node
called an operator, which maintains the network state. The operator receives trans-
actions from the users and bundles them into blocks that are submitted to the
PlasmaFramework smart contract on the Ethereum main chain.

• Watchers are applications continuously monitoring the child chain, validating its
behavior and reporting any inconsistency or malicious behavior to subscribed users.
Anyone can deploy and run its own watcher because the biggest the number of
running watchers, the safer the network gets.

While Ethereum is totally decentralized and runs on many nodes, OMG Network has
only one which is run by the OMG Foundation itself. However, decentralization of the
security is achieved through the network of watchers which monitors the operator and the
network for suspicious activities. The watchers check all the blocks that are submitted
to the root chain by pulling the Merkle proof tree from the operator, and then validating
that the transactions that are supposed to have happened, have indeed happened [10].
In this system, the network is semi-decentralized through the watchers that can identify
bad behaviors of the operator, including if it becomes unavailable or if transactions are
manipulated. If this become the case, the watchers have the ability to launch a mass
exit which flags all the funds on the plasma chain to be withdrawn back to Ethereum.
Watchers are able to do this because they have visibility to data on both the layer 1
and layer 2 blockchains. The consensus mechanism behind this system is called Proof of
Guarantee (PoG) [8]. Additionally, the security is guaranteed because the child chain is
non-custodial, which means that funds of the users never leave the Ethereum network at
any time. As a result, users can be ensured that they will always be able to recover their
funds, even if the OMG Network child chain goes offline. This feature is also known as
trustlessness [10].
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5.1. Introduction

This chapter contains in depth details about the final implementation of each component
of the architecture described in section 4.2.1. The source code of the implementation
can be found on the GitHub repository [45]. During the progress of the project, sev-
eral changes were made concerning the technologies used. These changes were mainly
at the level of the End Device and the means of communication between the Gateway

32



5.2. Architecture 33

and the Server. Subsequently, the implementation of the Micropayment extension is also
presented in this chapter but is explained in its own section. The source code of the
extension can be found at the same address as the rest of the implementation. Since the
project is vast and multiple sequence diagrams are presented throughout the thesis, a
final sequence diagram including all the components and the interactions between them
is included. Finally, this chapter also explains in details how the pycose Python library
has been modified to support COSE_CounterSignature. The source code of the pycose
library can be found on GitHub [46].

5.2. Architecture

The subsequent sequence diagram shows in more detailed the architecture of the LoRa-
MAC protocol presented in section 4.2.1.

Fig. 5.1.: Sequence diagram of the LoRa-MAC protocol

The End Device is divided into two components: the Raspberry Pi and the LoPy. The
communication between this two components is made through serial. The reason why
two devices are to be used to compose the End Device can be found in section 6.5.
The Gateway is also divided into two components: the UDP Packet Forwarder and the
Forwarding Network Server (FNS). This two components communicates through UDP
packets. The FNS communicates with the Blockchain by making HTTP requests and
with the Server through WebSockets. WebSockets allows sending message-based data,
similar to UDP, but with the reliability of TCP. They use HTTP as the initial transport
mechanism, but they keep the TCP connection alive after the HTTP response is received.
This functionality makes them a good choice for sending messages between a client and
a server [11].
The Server is divided into two components as well: the Home Network Server (HNS) and
the Application Server (AS). The AS calls the HNS by making HTTP requests. The HNS
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also uses HTTP to communicate with the Blockchain and WebSockets to communicate
with the FNS.
The first step in the sequence diagram is the exchange of the public keys between the
Raspberry Pi and the AS. Furthermore, the address of the End Device needs to be
provided to the Server as well. This exchange permits to create a new device in the AS.
The newly created device in the AS is then registered in the HNS which stores it in its
database. The AS then calls the Blockchain in order to store the public key and the
address of the device along with its own address in the deployed smart contract. If this
is not already done, the AS also stores its own public key in the smart contract. Finally,
on the AS side, a programmed response that will be sent to the End Device when an
upstream packet is received from it, is stored on the HNS.
On the End Device side, the Raspberry Pi generates a message and a packet to be sent.
The content of the message is encrypted by using the secret / symmetric key that the
End Device and the Server share. The packet is also signed with the private key of
the End Device. Then, the packet is sent through serial to the LoPy which forwards
it through LoRa to the Gateway. On the Gateway, the packet is received by the UDP
Packet Forwarder that transmits the packet to the FNS by using a UDP packet.
On reception of the packet, the FNS analyzes it and extracts the address of the device.
Thanks to this address, it can make a request to the smart contract on the Blockchain
to obtain the public key of the End Device that has sent the packet and the address of
the Server to which the packet has to be sent. The FNS can now verify the signature
of the packet by using the public key of the End Device so that only valid messages are
transmitted to the Server. If the packet is valid, the FNS can open a WebSocket with
the HNS and send the packet to it.
The HNS analyzes the packet, extracts the device address and gets the corresponding
public key of the End Device in its database. The HNS then verifies the signature of the
packet and if the signature is valid, it generates the corresponding secret / symmetric key
by using its private key and the public key of the End Device. With this symmetric key,
the HNS can decrypt the content of the payload and store this payload along with other
data (like the header of the message and the time of reception) on its database such that
the user can consult them on the AS later. Finally, the HNS can either send the response
packet stored previously by the AS or can generate a response packet if none have been
provided. The response packet is sent through the same WebSocket that has been opened
between the FNS and the HNS.
Again, the FNS has to verify the validity of the packet. For this purpose, it has to get
the public key of the Server on the smart contract in the Blockchain. Once the public
key is obtained, it can verify the validity of the packet and if everything is correct, the
packet can be sent to the UDP Packet Forwarder such that the response is sent to the
End Device.
The response packet is received by the LoPy and immediately forwarded to the Raspberry
Pi through serial. The Raspberry Pi verifies the signature of the packet too. Afterwards,
the response packet can be decrypted using the secret / symmetric key so that its content
can then be processed by the Raspberry Pi.
Each component of the architecture and their sub-components will be described in more
details in the next sections of this chapter.
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5.3. End Device

As explained previously, the End Device is in fact itself divided into two components:
the Raspberry Pi and the LoPy. Both components should be connected through serial as
shown in the following picture.

Fig. 5.2.: Picture of the Raspberry Pi and the LoPy4

The End Device can be used only in a manual / interactive mode where the user has to
manually run a program on both the Raspberry Pi and the LoPy simultaneously. The
program that runs on the Raspberry Pi asks to the user to provide the content of the
payload he wants to send to the Server. It is recommended to first start the program on
the LoPy and then the one on the Raspberry Pi. The program to be run on the Raspberry
Pi is written in Python while the one for the LoPy is written in MicroPython.
The "brain" of the End Device is the Raspberry Pi while the LoPy is mainly used just
to transmit the LoRa RF packets. This is why, most of the work and the logic is done on
the Raspberry Pi.

5.3.1. Raspberry Pi

The program to be run on the Raspberry Pi can be found on the LoRa_device directory
of the GitHub repository1. During the development of the thesis, the program was run
on a Respberry Pi Zero W2 running Python 3.7.3. The required packages can be found
in the requirements.txt file. The modified version of the pycose library [46] is also
required for the program to run properly. Some more detailed informations about how
to install all the required packages and the modified version of pycose can be found in
the README file of the LoRa_device directory. The README file also explains how to start

1https://github.com/inefix/Decentralized-LoRa/tree/master/LoRa_device
2https://www.raspberrypi.org/products/raspberry-pi-zero-w/

https://github.com/inefix/Decentralized-LoRa/tree/master/LoRa_device
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
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the program. The user needs to provision, among other variables, the public key of the
Server in a .env file. This public key needs to be divided between the X and the Y
values.
The main file of the Raspberry Pi program is the device.py file. The program can be
run for two different use-cases. If the user wants to generate a new End Device meaning
that he needs a new address for the device and a new pair of public-private keys, he can
start the program followed by a "-n" argument. Accordingly, the program generates all
the required data and stores them in the keys.txt file. Additionally, the keys.txt file
also stores the private value of the private key and the public key of the Server. The
second use-case can be used by the user when he has already registered his device and he
only wants to send a new packet. Hence, the second use-case does not need to generate
any of the previous generated data since it uses the one stored in the keys.txt file. For
this second use-case, the device.py program has to be run without any argument.
Once running, the program starts by either generating a new address for the device and
a new set of public-private keys or by reading the ones stored in the file keys.txt. The
address of the device is a randomized 64 bits identifier expressed in hexadecimals. The
length of the address is long enough such that collisions are very unlikely. In fact, the
number of different addresses is 264. The key pair is generated by using the cryptography
Python library. The elliptic curve used to generate the private key is the secp256r1 also
called NIST P-256.
When starting the program, the user is asked to write on his terminal the payload of the
message he wants to send. Afterwards, the program generates the symmetric key that
will be used to encrypt the payload. This symmetric key is also generated by using the
cryptography Python library. For this purpose, the program first uses the ECDH algo-
rithm with the private key of the device and the public key of the Server as parameters.
Then, the ECDH key is normalized thanks to the HKDF algorithm by using the following
parameters: SHA256 as algorithm, a length equal to 16 (since the resulting key will be
used for encryption with AES128), a salt equal to none and "handshake data" as the
info. As the parameter length equals to 16 can suggest, the symmetric key generated has
a length of 16 characters.
Subsequently, the payload is encrypted. This procedure is achieved by creating an
Enc0Message thanks to the standard pycose library. The protected part of the header
contains first the name of the algorithm used to encrypt, which is A128GCM and corre-
spond to AES in GCM mode with a 128 bits key. The second element of the protected
header is the IV which is "000102030405060708090a0b0c" and finally the last element is
the header of the message which is comprised of the MType, the counter and the address
of the device. For each new message sent, the counter is read, incremented by one and
stored in a file called counter.txt. The payload is encrypted using the AES128 algo-
rithm with the symmetric key and placed in the adequate part of the Enc0Message.
The newly created Enc0Message has to be signed with the private key. This is done by
appending a COSE_CounterSignature structure in the unprotected part of the header
of the Enc0Message thanks to the modified pycose library. Indeed, this functionality is
not developed in the standard pycose library. The COSE_CounterSignature structure
contains the name of the algorithm which is ES256 (ECDSA with SHA256) in its pro-
tected header. The signing of the encrypted payload is performed by using the ECDSA
algorithm with the private key of the device. The resulting signature is placed in the
adequate part of the COSE_CounterSignature structure.
The packet has now been created and is ready to be sent. The program opens a se-
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rial communication with the LoPy by using the asynchronous serial_asyncio Python
library. As explained in section 3.6, it is important to use asynchronous programming
when sending packets to the LoPy so that the program can release the processor while
waiting on the responses. Before sending, the packet which is in byte string format, it
is converted in its hexadecimal representation in order to be able to add an end of line
character ("\n") to it. Indeed, the end of line character is used to mark the end of a
communication between the Raspberry Pi and the LoPy. Once the packet is sent, the
program has to wait until a response packet is sent back from the LoPy.
Once a response packet is received from the LoPy, it is converted in binary data (byte
string) from its hexadecimal representation in order to obtain an Enc0Message. The sig-
nature of the response packet present in the COSE_CounterSignature structure of the
Enc0Message is then verified with the public key of the Server and if it is valid, the ci-
phertext of the Enc0Message is decrypted with the symmetric key previously generated.
During the entire run of the Raspberry Pi program, it is important to catch the eventual
errors that can easily happen due to the radio wave nature of the LoRa packets.

5.3.2. LoPy

The program to be run on the LoPy can be found on the LoPy directory of the GitHub
repository3. During the development of the master thesis, the program was executed on
a LoPy44 running Pycom MicroPython 1.20.2.r4. It is important to update the LoPy
before running the program. Otherwise, there could be some issues to receive the down-
stream packet, as for example, no reception at all. The program is developed to be run
on a LoPy equipped with a LoRa module and an antenna. The user must be careful to
never start the program on a LoPy if the antenna is not connected. Some more detailed
informations about how to check the firmware version and how to start the program can
be found in the README file of the LoPy directory.
The main file of the LoPy program is the device.py file. When starting it, it first
makes sure that Pybytes is disabled by modifying the file /flash/pybytes_config.json
present on the LoPy in order to ensure that downstream messages are received by the
LoPy. This procedure could imply a reboot of the LoPy.
Afterwards, the program initializes the LoRa MicroPython library developed by Pycom
in LORA mode (raw LoRa). Some really precise parameters need to be provided so that
the LoRa packets sent are received by the Gateway. This include to set the region to
EU868, the spreading factor (sf) to 12 (the spreading factor should be a value between 7
and 12, the higher it is, the less there is a risk of corrupted bits on the reception side), the
coding rate to 4/7 (4/5 and 4/6 have a higher chance of corrupted bits on the reception
side and 4/8 has a higher chance of the message not being received on the Gateway side),
the power mode to always on, the frequency to 867.5 MHz and the bandwidth to 125
KHz.
The program then creates a raw LoRa socket for sending and receiving LoRa messages.
Subsequently, the program opens a serial communication with the Raspberry Pi by using
the uart MicroPython library developed by Pycom.
The initialization part is now terminated and the LoPy program starts listening to packets
sent by the Raspberry Pi through the serial communication. When a packet is received,

3https://github.com/inefix/Decentralized-LoRa/tree/master/LoPy
4https://pycom.io/product/lopy4/

https://github.com/inefix/Decentralized-LoRa/tree/master/LoPy
https://pycom.io/product/lopy4/
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it is converted in binary data (byte string) from its hexadecimal representation since it
had to be converted for the serial transmission as explained in the previous subsection.
The packet is then sent to the Gateway through LoRa.
The program waits for a response packet from the Gateway. This is done by checking dur-
ing 2 minutes every second if a packet has been received. The one second break between
each check is very important since it permits to the LoPy to listen to eventual incoming
LoRa messages. Indeed, if the program were to continuously check if a packet has been
received, it will not let the possibility to the LoPy to listen for incoming LoRa messages
and thus none would be received. The 2 minutes time interval acts as a protection to
avoid to the program to get stuck waiting indefinitely.
If a LoRa downstream packet is received, it is converted from its byte string format to its
hexadecimal value and forwarded back to the Raspberry Pi. If no LoRa packet is received,
an empty response is forwarded to the Raspberry Pi. Of course, an end of line character
("\n") is added to the hexadecimal packet to mark the end of the communication between
the LoPy and the Raspberry Pi.

5.4. Gateway

The Gateway is divided into two components: the UDP Packet Forwarder and the For-
warding Network Server (FNS). Both components are in fact programs that are run
simultaneously on the same device, a Raspberry Pi 3 Model B with a RAK831 LPWAN
Gateway Concentrator Module mounted on top through SPI and an antenna connected
to it as shown in the following pictures.

Fig. 5.3.: Pictures of the Gateway

The UDP Packet Forwarder is a standard program that permits to interact with the
concentrator to either receive or send LoRa messages. The program is mainly used in the
LoRaWAN protocol in conjunction with TTN. Since one of the goal—of this project—is
to use standard LoRa hardware and softwares as they are without any modification, there
was a need to develop a program on top of the UDP Packet Forwarder to bring the new
functionalities of the LoRa-MAC protocol to the gateways. This functionalities include
among others, decentralization of the gateways using the blockchain and the ability to
be remunerated as a gateway. This is why, the FNS as been developed to provide this
additional functionalities.
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5.4.1. UDP Packet Forwarder

The UDP Packet Forwarder has already been described in many details in section 3.4. It is
worth mentioning that the global_conf.json configuration file used on the Raspberry
Pi 3 can be found on GitHub5. Since the project aims to develop an alternative to
LoRaWAN, in order to ensure that all messages are effectively received on the Gateway
side, the options to forward LoRa packets containing Cyclic Redundancy Check (CRC)
errors or not having a CRC at all have been set to true. The CRC permits to detect if
a LoRa message is corrupted. The UDP Packet Forwarder is configured to forward the
LoRa packets that are received to the FNS on port 1700 of the address 0.0.0.0 using the
UDP protocol. The UDP Packet Forwarder is also configured to listen to incoming UDP
packets on port 1700 of the address 0.0.0.0.

5.4.2. Forwarding Network Server (FNS)

The program to be run as the FNS has been written in Python and can be found on the
ForwardingNetworkServer directory of the GitHub repository6. The program has been
tested on Python 3.7.3. The required packages can be found in the requirements.txt
file. The modified version of the pycose library [46] is also required for the program
to run properly. Some more detailed informations about how to install all the required
packages and the modified version of pycose can be found in the README file of the
ForwardingNetworkServer directory. The README file also explains how to start the
program.
To configure the program, the user needs to provide some variables in a .env file, including
MongoDB7 credentials. In fact, MongoDB is the database solution selected for all the
database needs for the entire thesis because it is an easy solution to use and is quite
popular. In addition, in order to connect to the Ethereum blockchain, a node connected
to the blockchain is needed. Therefore, the user needs to provide the address of such a
node. There exists many alternatives which are mainly subdivided into two categories:
providing a node hosted by the user himself (like for example Geth8) or using a node
provider. The node provider category is itself divided in two categories: companies
that abstract away the node management and just provide APIs (like Infura9 which is
the solution tested during the implementation) and companies that deploy dedicated or
shared nodes (like BlockDaemon10) [47].
The program starts with an initialization phase where different clients are initialized. This
include the client to connect to the MongoDB database (using the motor Python library)
and the client to connect to the Ethereum blockchain (using the web3s Python library
which is an asynchronous version of the famous web3 library). After the initialization of
the web3s client is done, it is important to initialize the web3 object that will permit to
interact with the smart contract deployed on the Blockchain. This is done by passing the
address and the Application Binary Interface (ABI) of the smart contract as parameter

5https://github.com/inefix/Decentralized-LoRa/blob/master/ForwardingNetworkServer/
global_conf.json

6https://github.com/inefix/Decentralized-LoRa/tree/master/ForwardingNetworkServer
7https://www.mongodb.com/
8https://geth.ethereum.org/
9https://infura.io/

10https://blockdaemon.com/

https://github.com/inefix/Decentralized-LoRa/blob/master/ForwardingNetworkServer/global_conf.json
https://github.com/inefix/Decentralized-LoRa/blob/master/ForwardingNetworkServer/global_conf.json
https://github.com/inefix/Decentralized-LoRa/tree/master/ForwardingNetworkServer
https://www.mongodb.com/
https://geth.ethereum.org/
https://infura.io/
https://blockdaemon.com/
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to the object. The smart contract ABI is an interface that defines a standard scheme in
JSON of how to call functions in a smart contract and get data back. The smart contract
ABI is designed for external use such as enabling application-to-contract interactions by
defining the function names and the argument data types of the smart contract [12].
The motor and the web3 clients are asynchronous and permit to the program to run in
an asynchronous way such that the Gateway can listen to incoming packets at all time.
Furthermore, an asynchronous UDP server is started on port 1700 of the address 0.0.0.0
in order to listen for incoming packets sent by the UDP Packet Forwarder.
Packets which are received by the UDP server, are of the following forms.

1 \x02\xa0\x9d\x00\xb8\’\xeb\xff\xfe\xa8o\xb9{"rxpk":[
2 {
3 "tmst" : 1525043316,
4 "chan" : 5,
5 "rfch" : 0,
6 "freq" : 867.500000,
7 "stat" : 1,
8 "modu" : "LORA",
9 "datr" : "SF12BW125",

10 "codr" : "4/7",
11 "lsnr" : 5.8,
12 "rssi" : -15,
13 "size" : 5,
14 "data" : "aGVsbG8="
15 }
16 ]}

List. 5.1: PUSH_DATA packet

1 \x02\x90\xff\x02\xb8’\xeb\xff\xfe\xa8o\xb9

List. 5.2: PULL_DATA packet

It is first necessary to analyze this packets in order to know what they actually mean.
The packets are in a string byte format and the first 12 bytes are hexadecimals values.
The first byte is the protocol version. This byte is always equal to 2. The next two bytes
are a random token. The fourth byte, which is the most important of the first 12 bytes,
represents the type of the packet. The bytes that follow until the rxpk JSON object are
the gateway unique identifier (MAC address). The following table describes what each
possible value for the fourth byte means.

Value Type of packet
0 PUSH_DATA
1 PUSH_ACK
2 PULL_DATA
3 PULL_RESP
4 PULL_ACK

Tab. 5.1.: Possible values for the fourth byte of a UDP packet

The FNS has to filter all the packets send by the UDP Packet Forwarder based on their
fourth byte and keep only the ones with a value equals to 0 or 2 for this byte. In fact,
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when an upstream packet is sent from a device to a server, the UDP Packet Forwarder
sends two UDP packets to the FNS to represent this single upstream packet. The first
UDP packet is a PUSH_DATA packet and contains the actual content of the upstream
packet. The second UDP packet is a PULL_DATA packet that contains no data but it
can be used by the FNS to respond to in order to send a downstream response packet from
the gateway to the device. Both UDP packets are sent by the same address of the UDP
Packet Forwarder but from different ports. Afterwards, the FNS program applies some
more filters to the PUSH_DATA packets such that only messages sent in the context of
the LoRa-MAC protocol are taken into consideration. This filters include, among others,
ensuring that the frequency used to send the packet is 867.5 MHz and that the coding rate
is 4/7. Both of this filter data can be found in the rxpk JSON payload. Finally, the data
field of the rxpk JSON payload of the PUSH_DATA packets that passed all this filters,
needs to be base64 decoded in order to get the actual content of the upstream packets.
Once the actual content of the LoRa packet is actually decoded, an acknowledgment UDP
packet of type PUSH_ACK can be sent from the FNS to the UDP Packet Forwarder.
Afterwards, the decoded content of the upstream packet which is an Enc0Message can be
processed. It is possible to extract the header of the message and thus obtain the address
of the device (deviceAdd) that has sent the packet. With the deviceAdd, it is possible to
get all the data stored for this device on the blockchain. Therefore, the program requests
this data to the Blockchain by using the web3 object to call the Devices mapping of
the smart contract by passing the deviceAdd as parameter. The FNS program gets
as response the IP address and the port of the server to which the packet should be
forwarded and the public key of the device. This public key is divided between the X
and the Y values. Now that the program is in the possession of the public key of the
device, it can check if the signature present in the COSE_CounterSignature structure of
the Enc0Message is valid. If this is the case, the packet can be forwarded. There is just
one last step before. The address of the server returned by the smart contract needs to
be converted so that it can actually be used.
In fact, the address of the server can either be an IPv4 or an IPv6 address or a domain
name. In the case of an IPv4 or an IPv6 address, the address should be converted from its
decimal format to its dotted-decimal format before being used. In the case of a domain
name, if it ends with .eth, this means that it is an Ethereum Name Service (ENS)11

decentralized domain name and that a special procedure needs to be applied to get the IP
address. Otherwise, if it is a "normal" domain name, getting the IP address associated
to it is much more straight forward. "The ENS is a distributed, open, and extensible
naming system based on the Ethereum blockchain" [48]. ENS has similar goals to DNS
and is mostly used to map human-readable names to machine-readable identifiers such
as Ethereum addresses. But, it can also be used like DNS to map human-readable names
to simple IP addresses. ENS is rather popular and is implemented in the web3 and
web3s libraries but unfortunately, the mapping to standard IP addresses is a relatively
new feature and thus is not already implemented in Python. Thereby, the project has
overcome this limitation by calling directly the ENS smart contract on the blockchain
by using its smart contract address and ABI, in order to obtain the corresponding IP
address. To perform this call, the human-readable name that is used as a parameter has
to be converted to a namehash. This operation is performed in the namehash.py file12.

11https://ens.domains/
12https://github.com/inefix/Decentralized-LoRa/blob/master/ForwardingNetworkServer/
namehash.py

https://ens.domains/
https://github.com/inefix/Decentralized-LoRa/blob/master/ForwardingNetworkServer/namehash.py
https://github.com/inefix/Decentralized-LoRa/blob/master/ForwardingNetworkServer/namehash.py
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Once the program is in the possession of all the details for sending the packet (the address
and the port of the server), this one can be sent by opening a WebSocket communication
to the Server.
In the case where the Server wants to respond to the End Device with a downstream
packet, the Server sends a downstream packet back to the FNS by using the same opened
WebSocket. This time, the FNS receives the packet directly in the correct LoRa-MAC
format. The FNS needs to verify the validity of the signature present in the packet.
Thus, it will again call the smart contract in the Blockchain by providing the address of
the server in the header of the downstream packet to get the public key of the server.
Once it gets the public key (the X and the Y values), it can verify the validity of the
signature. If the signature is valid, the downstream packet is programmed to be sent
when a PULL_DATA packet is received from the UDP Packet Forwarder. Indeed, it is
not possible to respond directly to the UDP Packet Forwarder on the port from which
the PUSH_DATA packet was received because PULL_DATA packets are received on
a different port. Thus, a FIFO queue has been implemented to store the downstream
packets programmed to be sent. Once a PULL_DATA packet is received, the program
checks if there is a downstream packet stored in the FIFO queue to be sent. If the queue
is not empty, the downstream packet at the head of the queue is sent to the UDP Packet
Forwarder. Before that, the FNS program has to send an acknowledgment UDP packet
of type PULL_ACK to the UDP Packet Forwarder. It then has to create an UDP packet
containing the downstream packet. An example of such an UDP packet is shown in the
following listing.

1 \x02\x00\x00\x03{"txpk":
2 {
3 "imme" : true,
4 "rfch" : 0,
5 "freq" : 867.500000,
6 "powe" : 14,
7 "modu" : "LORA",
8 "datr" : "SF12BW125",
9 "codr" : "4/7",

10 "prea" : 8,
11 "ipol" : false,
12 "size" : 5,
13 "ncrc" : true,
14 "data" : "aGVsbG8="
15 }
16 }

List. 5.3: PULL_RESP packet

The first byte of the UDP packet is the protocol version which is always equal to 2.
The next two bytes are a random token. The FNS always assigns the value 0 to this
two bytes. Next comes the byte representing the type of the packet. This byte is set
to 3 (PULL_RESP). Then comes the txpk JSON object which is very similar to the
rxpk JSON object. It permits to set all the various parameters of the LoRa packet that
will be sent to the device including among others the frequency and the coding rate.
Furthermore, the txpk JSON object also contains of course the downstream LoRa-MAC
packet, encoded in base64, which is placed in the data field. It is important to note that
the calculation of the size field is not straight forward and that a special procedure needs
to be followed. Finally, the UDP packet containing the downstream LoRa-MAC packet is
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sent to the UDP Packet Forwarder signaling the end of the LoRa-MAC communication
on the FNS side.
As with the Raspberry Pi program on the End Device, during the entire run of the FNS
program, it is important to catch the eventual errors that can easily happen due to the
radio wave nature of the LoRa packets.

5.5. Blockchain

As explained in section 2.5.1, the blockchain technology selected—for the project—is
Ethereum and the smart contracts running on it can be written with the Solidity lan-
guage. The full Solidity code of the deployed smart contract can be found in Appendix
A.1. The smart contract is called LoraResolver and requires a version of the Solidity
compiler comprised between 0.7 and 0.9. Data are always stored in the smart contract
by the AS and read by the FNS. Thus, the smart contract is basically used as a database
between the two entities but with the advantage of being totally decentralized. In fact,
once deployed on the blockchain, no one can control or alter the smart contract in a bad
way and it will run forever or at least as long as Ethereum exists.
The LoraResolver smart contract starts by defining a struct called Device. This struct
permits to store all the required data of an End Device such that it is then possible for
a gateway to verify that a LoRa-MAC packet as been signed by this End Device. Fur-
thermore, the Device struct also contains all the informations required for the routing of
upstream packets to the server that owns the End Device. In more details, it is possible
to store the following data in the Device struct: the IPv4 address of the Server, the
IPv6 address of the Server, the domain name of the Server, the IPv4 port of the Server,
the IPv6 port of the Server, the port associated to the domain name of the Server, the
Ethereum address of the Server that owns the End Device and finally the X and the Y
values of the public key of the End Device. The IPv4 and IPv6 addresses are stored in
decimal format and not in dotted-decimal format. The domain is stored as a string. All
the different ports are stored as unsigned integers of 16 bits. The Ethereum address of
the owner is stored as an address. The X and the Y values of the public key of the End
Device are stored as unsigned int of 256 bits. The Ethereum address of the owner of the
End Device is mainly used to ensure that only the owner of an end device can modify it
once it has been created and stored.
The LoraResolver smart contract defines another struct which is called Server. This
struct permits to store all the required data of a server such that it is possible for a gate-
way to verify that a LoRa-MAC packet as been signed by this Server. In more details,
it is possible to store the following data in the Server struct: the X and the Y values of
the public key of the Server and the Ethereum address of the user that owns this Server.
As with the Device struct, the Ethereum address of the owner of the Server is mainly
used to ensure that only the owner of a server can modify it once it has been created and
stored.
Afterwards, a mapping for the devices is created. This mapping permits to assign a spe-
cific Device struct to a certain unique integer. This unique integer is the address of the
device (deviceAdd) which is an unsigned integer of 64 bits.
The mapping for the servers is more complicated since there does not exist a unique
format for the address of a server. Thus, there is an ipv4Servers mapping for when the
address of the server is an IPv4 address, an ipv6Servers mapping for the case of an IPv6
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address and a domainServers mapping for when the address of the server is a domain
name.
The smart contract contains six methods that work more or less the same way. Three
of them permit to register or update an end device with an IPv4 server address or an
IPv6 server address or using a domain name as server address. The other three permit
to register or update a server with an IPv4 server address or an IPv6 server address or
using a domain name as server address. To simplify the reading and the comprehension,
only one function of each group will be analyzed in more details.
The registerIpv4Device public function takes as argument a deviceAdd, an IPv4 server
address and a port, and the X and the Y values of the public key of the device. The
function first performs a series of tests to ensure the proper functioning of the smart
contract. The first check consists in verifying that the device is not already stored in the
devices mapping or that the user calling the function is the actual owner of the device.
This is a very important check because it ensures that no one can modify a device that
is not its property and also that multiple devices with the same deviceAdd do not ex-
ist. Afterwards, the function performs some tests to ensure that the parameters of the
function are not null. Finally, the function stores all the given parameters in the Device
struc that maps to the provided deviceAdd.
The registerIpv4Server public function takes as argument an IPv4 server address and
the X and the Y values of the public key of the server. Again, the function will first
perform a series of tests to ensure the proper functioning of the smart contract. The
first check consist in verifying that the server is not already stored in the ipv4Servers
mapping or that the user calling the function is the actual owner of the server. Again,
this is a very important check because it ensures that no one can modify a server that is
not its property and that multiple servers with the same IPv4 server address do not exist.
The function performs then some tests to ensure that the parameters of the function are
not null. Finally, the function stores all the given parameters in the Server struc that
maps to the provided IPv4 server address.
There is no need for getter functions that return the different mappings of the smart con-
tract because all the mappings are declared as public and can thus be accessed without
needing getter functions.
To deploy the LoraResolver smart contract, many different solutions exist. Two of them
which have been tested are: the Truffle Suite13 and the Remix Ethereum IDE14. For test-
ing locally the interactions of the FNS and the AS with the Blockchain, the Truffle Suite
is practical to use. But, for deploying the smart contract on the Ethereum Mainnet or
on an Ethereum Testnet, the Remix Ethereum IDE is recommended.
The LoraResolver smart contract has been deployed on the Rinkeby Test Network be-
cause the OMG Network test network is running on Rinkeby. This permits to use a single
Ethereum test network for the entire project. The deployed LoraResolver smart contract
can be found at this address: 0x4a9fF7c806231fF7d4763c1e83E8B131467adE6115.

13https://www.trufflesuite.com/
14https://remix.ethereum.org/
15https://rinkeby.etherscan.io/address/0x4a9fF7c806231fF7d4763c1e83E8B131467adE61

https://www.trufflesuite.com/
https://remix.ethereum.org/
https://rinkeby.etherscan.io/address/0x4a9fF7c806231fF7d4763c1e83E8B131467adE61
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5.6. Server

As explained, the Server is itself divided into two components: the Home Network Server
(HNS) and the Application Server (AS). Both components are in fact programs that
are run simultaneously on the same server. In very short, the HNS acts as a back-end
component and the AS as a front-end / web site component. The HNS is programmed
in Python and the AS in React. Both components are running in a Docker Compose
instance which permits to run multi-container Docker applications. This permits to start
both components with a single command which is really useful since both components
run on the same server simultaneously. The Docker Compose instance is configured by
using a YAML file called docker-compose.yml which can be found on GitHub16. During
the development of the thesis, both programs were run on a hosted Ubuntu VM at the
University of Fribourg. Some more detailed information about how to install all the
required packages and the modified version of pycose can be found in the README file of
the Server directory. This README file also explains how to start the Docker Compose
instance. The user needs to provide various variables in a .env file.

5.6.1. Home Network Server (HNS)

The program to be run as the HNS can be found on the Server/HommeNetworkServer
directory of the GitHub repository17. The program has been tested on Python 3.7. The
required packages can be found in the requirements.txt file. The modified version of
the pycose library [46] is also required for the program to run properly.
The main file of the HNS program is the server.py file. This file contains two mains
components: an HTTP server that is used as back-end for the server and a WebSocket
server which is used to communicate with the FNS.
To configure the program, a user needs to provide some MongoDB credentials and the
address and port of the server. Furthermore, a private-public key pair is also needed. A
detailed explanation of how this pair of keys is generated is already provided in section
5.3.1. Finally, the user also has to provide his Ethereum address.
The program starts with an initialization phase where a MongoDB client (the motor
Python library), a WebSocket server (the websockets Python library) and an HTTP
server (the aiohttp Python library) are initialized. All this initialized components work
in an asynchronous way and are described in more details.
The WebSocket server manages the communication with the FNS. It is started on port
8765 of address 0.0.0.0. When the WebSocket server receives a LoRa-MAC packet from a
gateway which is in fact a Enc0Message, it starts by extracting the header from it. The
program has to first verify that it has not already received this LoRa-MAC packet from
this device. This is achieved by comparing the counter of the received packet and the
counter of the last received packet stored in the database. If the new packet is actually a
new one, the program verifies that the gateway sending the packet is the same as the one
who sent the last received packet stored in the database. This procedure will be discussed
in more details later but could permit to the HNS to not open micropayment channels
with too many different gateways. Thus, if a packet is received from another gateway
than the usual one, the program waits 10 seconds to see if a packet is received from the

16https://github.com/inefix/Decentralized-LoRa/blob/master/Server/docker-compose.yml
17https://github.com/inefix/Decentralized-LoRa/tree/master/Server/HomeNetworkServer
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usual gateway. Otherwise, the program considers this new gateway as the new usual one
and processes its packet.
The processing of the received LoRa-MAC packet starts by getting the public key of the
End Device in the database of the HNS. The program can then verify if the signature
present in the COSE_CounterSignature structure of the Enc0Message is valid. If this is
the case, the program generates the symmetric key with the public key of the End Device
and the private key of the Server in order to be able to decrypt the ciphertext of the
packet. The decrypted payload is then stored in the database such that the AS will be
able to access it and display it to the user.
Afterwards, a response packet is sent to the FNS through the same opened WebSocket.
This response packet has either been partially pre-stored by the AS or is totally created
by the the HNS. So, the program has to first verify if a pre-stored payload is present
in its database. If this is the case, the program constructs a LoRa-MAC downstream
packet by providing an appropriate header (using the right MType, counter and device
address), encrypting the payload and signing the packet. The procedure is explained in
more details in section 5.3.1. If no pre-stored payload is present in the database, the HNS
generates a payload and an header and constructs a downstream packet. In both cases,
the counter value to be included in the header of the message is stored in a file called
counter.txt, as it is done in the Raspberry Pi program (section 5.3.1).
The HTTP server acts as a back-end RESTful service for the AS. It is running on port
8080 of address 0.0.0.0. The HTTP server exposes URL paths that are callable by the AS
by using HTTP requests with different HTTP methods (GET, POST, PATCH, DELETE
methods). For each URL path and its HTTP method, a corresponding operation on the
database is performed. In fact, the HTTP server is mainly used to permit to the AS to
access the database of the HNS. The database is divided in four collections: device, msg,
gateway, down. The device collection, as the name suggest, stores all the required data
at the creation of a new device (public key, deviceAdd, server address and port, etc).
It is important to note that this collection does not contain any of the private keys of
the devices because they have been created on the End Device side and the private keys
should not be used outside of the Raspberry Pi program. The msg collection stores all the
received messages from the FNS. A message stored in this collection consists of the header
(the MType, the counter and the deviceAdd), the payload, the Ethereum address of the
owner and the gateway, if the message has been payed, etc. The gateway collection is used
for the micropyament channels and permits to store all the data about a micropayment
channel (the address of the deployed micropayment smart contract, the amount already
payed, the total amount stored in the smart contract and the expiration time of the smart
contract). Finally, the down collection stores all the downstream messages programmed
by the AS to be sent as response packets to the end devices. These down messages stored
contain the deviceAdd, the payload, the date and time and if they have been transmitted
to the End Device.
The HNS also has a really important role in the Micropayment extension but this will be
explained in section 5.7.4.
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5.6.2. Application Server (AS)

The program to be run as the AS can be found on the Server/ApplicationServer di-
rectory of the GitHub repository18. The program has been tested on Node 14. The AS is
a front-end web site developed with React. It permits, among other features, to register
new devices on the blockchain, to consult the content of the upstream packets sent from
an End Device to the Server and to program downstream packet responses to be sent
from the Server to the End Device. For registering new devices on the web site, it is
mandatory for the user to have installed a browser cryptocurrency wallet software that
can be used to interact with the Ethereum blockchain. An example of such a browser
software is the MetaMask19 browser extension.
The AS web site consists of three web pages: the Devices page, the Messages page and
the Down page. Each page is developed in one .jsx file inside the src/component directory
of the ApplicationServer directory. This directory contains also some other useful files
like the abis.js file which contains the ABI of the LoraResolver smart contract and
the Style.css file which defines the CSS style of the three web pages. All three pages
and their source code are going to be detailed.
The Devices page lists all the devices registered by the server which are stored in the
device collection in the database of the HNS. This web page acts as a nice web inter-
face for interacting with this database collection through HTTP requests (GET, POST,
PATCH, DELETE requests). In fact, HTTP requests are sent to the HNS back-end which
performs a corresponding operation on the database and returns the result as a JSON ob-
ject to the web page. This procedure of HTTP requests is the same for the two other web
pages and thus will not be mentioned anymore. For each device, the web page displays a
card containing the deviceAdd, the public key and the name of the device. It is possible
to define a name for each end device to facilitate the reading and the comprehension of
the end user. For registering a new device, the user needs to click the blue button on the
top right corner with the text "Add device". Once this button has been clicked, a modal
form is presented to the user which lets him register his new device with a nice interface.
The user has to complete the different fields. The name field is not mandatory but the
deviceAdd and the public key ones are. The data to complete this fields can be generated
with the Raspberry Pi program for example. Once the modal form has been completed,
the user can register his new device by clicking the corresponding button. By clicking this
button, the user is asked to pay some ETH for the transaction to be submitted on the
blockchain. This permits to register a new device on the LoraResolver smart contract.
Once the user has payed for the transaction fees on his cryptocurrency wallet, he needs
to wait a few seconds for the transaction to be processed on the blockchain. Afterwards,
the newly registered device is shown along with the other devices registered on the page.
Each card containing a device has three buttons: send, modify, delete. The send but-
ton opens a modal form that permits to write and program a payload that will be sent
in response to an upstream packet received by the Server from this End Device. The
modify button also permits to open a modal form but this time to modify the name of
the device. Finally the delete button, as the name suggest, permits to delete a device.
Moreover, the page contains a reload button on the top right corner that permits to
reload the devices that are stored in the device collection. Finally about the Devices
page, each time the web page is loaded, the web site first checks if the server hosting it

18https://github.com/inefix/Decentralized-LoRa/tree/master/Server/ApplicationServer
19https://metamask.io/
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is already registered in the blockchain and if it is not the case, a transaction to register
the public key is performed.
The Messages page lists all the upstream messages received by the server from all the
devices. All this messages are stored in the msg collection in the database of the HNS.
For each message, the web page displays a card containing the date and time at which
the message has been received, the payload and the header of the message. Each message
card has two buttons: respond and delete. The respond button has the same purpose
as the send button in the Devices page which opens a modal form that permits to write
and program a payload that will be sent in response to an upstream packet. The delete
button permits to delete a message. Finally, the Messages page also contains a reload
button on the top right corner that permits to reload the messages received by the HNS.
The Down page lists all the downstream messages programmed by the AS for all the end
devices. All this downstream messages are stored in the down collection in the database
of the HNS. This web page is very similar to the Messages page. For each downstream
message, the web page displays a card containing the date and time at which the message
has been stored in the database collection, the payload of the message, the deviceAdd of
the End Device to which the downstream message will be sent to and an indication about
if the downstream message has already been sent. Each downstream message card has
two buttons: modify and delete. The modify button opens a modal form that permits
to modify the payload programmed for this downstream message. The delete button
permits to delete a downstream message. Finally, the Down page contains a reload button
on the top right corner like the other two pages that permits to reload the downstream
messages which are stored in the down collection.
Screenshots of the three web pages just described and their functionalities can be found
in Appendix B.

5.7. Extension: Micropayment

The section will discuss how the two solutions of Ethereum layer 2 scaling were used and
implemented in order to enable micropayments between the Server and the Gateway.
It is important to recall that payments are made only unidirectionaly from a server to
a gateway. The section will also discuss which changes had to be done to the initial
sequence diagram such that remuneration is actually feasible and makes sense. The
following sequence diagram highlights where the Micropayment extension takes place in
the original sequence diagram.
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Fig. 5.4.: Sequence diagram with the Micropayment extension highlighted

The next sequence diagram describes in details the interactions between the Gateway,
the Blockchain and the Server in the Micropayment extension.

Fig. 5.5.: Sequence diagram of the Micropayment extension

The components of the Gateway remain the same but a new component is added to the
Server : the Payment service. This new component is used by the Server to perform all
the payment related tasks. This service has been developed in JavaScript because the
web3 library is much more complete and standardized in JavaScript than in Python and
because the library to interact with the OMG Network is only available in JavaScript.
The major change in the original communication between the Gateway and the Server
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is that now the Gateway does not send the upstream packet directly when it is received
from the End Device. In fact, if the Gateway would have forwarded the entire upstream
packet as previously, there would be no incentive for the Server to pay for that packet
since this last one would already be in possession of the entire packet. This is why, on
reception of an upstream packet on the Gateway side, the Gateway now performs an hash
of all the protected elements of the packet that the signature authenticates. This hash is
then sent along with the signature to the HNS such that this one can still verify the sig-
nature of the packet but over the hash. This procedure permits to the Gateway to prove
that an upstream packet as really been received but without giving the actual content for
"free". This procedure also permits to the Server to be sure that an upstream packet has
really been received by the Gateway since the signature sent can only be generated by the
private key of the End Device. Along with the hash and the signature of the upstream
packet, the Gateway also sends the header of the message and its Ethereum address in
order to get paid. The header of the message can be sent by the Gateway because it does
not contain any hint about the payload of the message. Furthermore, the deviceAdd is
useful for the Server to know about which device the packet comes from and the counter
permits to verify that the message has not already been received on the Server side.
On the Server side, if the signature received is valid, the HNS requests for a payment
to the Payment service. The Payment service performs the payment on the blockchain
either using a micropayment channel or using the OMG Network. A receipt of the pay-
ment is sent back to the HNS which forwards it to the FNS. This last one verifies the
payment receipt and if the money has been received, it sends the entire upstream packet
to the HNS. On reception, the HNS performs the usual procedure to verify the signature
of the packet and decrypt the ciphertext. If the HNS has a downstream packet to send
back to the End Device, it has to pay for the transmission of this downstream packet
as well. Thus, a payment is requested to the Payment service which processes it and
returns the payment receipt. Finally, the payment receipt and the response packet can
be sent to the FNS which again has to verify the payment before forwarding the packet
to the UDP Packet Forwarder if everything is as expected. This last step concludes the
sequence diagram of the Micropayment extension.
Of course, for performing micropayments on the blockchain, the user needs to have ETH
associated to its Ethereum address. Furthermore, if micropayments are performed on the
OMG Network, the user needs to deposit some of his ETH on the OMG Network. This
can be done by using the OMG Network Web Wallet20. Last precision about the OMG
Network, it is advised for each user deploying a gateway to first connect his Ethereum
wallet to the OMG Network Web Wallet as well. However, no deposit of ETH on the web
wallet is needed for these users.
The followings subsections will discuss in more details the implementation of the Micro-
payment extension for each component involved.

5.7.1. Forwarding Network Server (FNS)

To configure the FNS for the Micropayment extension, the user needs to provide his
Ethereum address and the private key associated. The private key is used on the gateway
side only to close micropayment channels.
On reception of an upstream packet from the UDP Packet Forwarder, the FNS verifies

20https://webwallet.mainnet.v1.omg.network/
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the signature of the packet as previously explained. Once the signature is verified, the
Countersign_structure is constructed from the packet. This structure is then hashed
using the SHA256 algorithm because the signature of the packet is performed on the End
Device side by using the ES256 algorithm which is, in more details, the ECDSA algo-
rithm applied to an hash realized by the SHA256 algorithm. This results in the hashed
structure which is sent to the HNS along with the extracted signature and header from
the packet and the Ethereum address of the user who runs the Gateway.
Afterwards, the FNS receives a payment receipt from the HNS. This payment receipt
can be of two different forms depending on the micropayment solution used. If the OMG
Network has been used, the payment receipt is in fact the transaction hash of the trans-
action that has been submitted on the OMG Network. This transaction hash can be
verified by the FNS only after more or less two minutes. This is one of the restrictions
of the OMG Network which will be discussed in more details in section 6.4. This two
minutes waiting time implies that the HNS has to send, along with the payment receipt,
also the downstream response packet that has to be forwarded from the Gateway to the
End Device. In fact, a two minutes waiting period is a too long waiting time for the End
Device to keep listening for incoming packets. Indeed, the FNS program will process the
downstream packet as usual by verifying the signature and constructing the UDP packet
to be sent to the UDP Packet Forwarder. Once the downstream packet sent, this thread
of the FNS program sleeps for two minutes before verifying the transaction hash. In fact,
the FNS program opens a new thread for each new upstream packet received such that
even if a thread needs to wait, the FNS program can still continue its work by receiv-
ing / processing new incoming upstream and downstream packets. After the two minutes
sleep, the thread of the FNS can verify the transaction hash of the OMG Network trans-
action. Since the OMG Network only provides a library for the JavaScript language and
none for Python, the complete process of transaction hash verification has to be totally
implemented. This is achieved by making a RPC call containing the transaction hash to
a OMG watcher which returns various data about the transaction on the OMG Network.
It is then possible to extract the sender, the currency, the amount, the receiver and the
metadata associated to this OMG transaction. All this data can then be verified by the
FNS to ensure that it has been paid for forwarding the LoRa-MAC packet. It is impor-
tant to mention that if the Server wanted to send a downstream packet, it had to pay
for two packets: the upstream and the downstream packet. This element is also verified
by the FNS and if there is any issue with the transaction data, the upstream packet is
simply not sent by the FNS to the HNS. Otherwise, the upstream packet is forwarded to
the HNS and this conclude the communication between the two components.
On the other hand, if the micropayment solution used is a micropayment channel, the pay-
ment receipt contains a signature, the address of the smart contract of the micropayment
channel and the amount payed for the upstream packet. The program has to perform
different checks to ensure that the signature and the smart contract are valid such that it
will then be possible to recover the funds stored in the smart contract. The FNS program
stores the ABI of the SimplePaymentChannel smart contract such that it can open a
web3 client by providing the contract address in order to interact with the smart contract
deployed by the Payment service. In addition, the FNS program also stores the runtime
bytecode of the SimplePaymentChannel smart contract such that it is possible to ensure
that the Payment service as really deployed the correct SimplePaymentChannel smart
contract without any modifications. The runtime bytecode is a low-level programming
language which is compiled from a high-level programming language such as Solidity [12].
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Since the bytecode is derived from the Solidity code of the smart contract, if there is a
single modification in it, the bytecode does not match anymore. In addition, the program
also verifies the expiration time of the deployed smart contract. Afterwards, the program
gets the data stored about the payment channel in its database. The data mainly consist
of the previous signature stored and the amount of ETH owned by the Gateway in the
smart contract. A check is then performed to ensure that there are enough available
funds in the smart contract in order to pay for transferring this new packet. If all checks
succeed, the FNS program can verify the signature sent by calling the isValidSignature
function of the smart contract. If the signature is valid, the program checks if it is time to
close the payment channel. In fact, the user can configure a threshold of balance (percent
of used funds) and time (number of second before the expiration) that if exceeded, will
close the payment channel automatically. If one of the two threshold is exceeded, the FNS
program calls the close function of the smart contract by creating an Ethereum transac-
tion signed by the private key. This transaction contains the last signature stored and the
total amount of ETH owned. Accordingly, owned funds are sent to the Ethereum address
of the Gateway and the remaining funds, if any, are sent to the address of the Server.
In this case, the FNS program has to later notify the HNS of the closure of the smart
contract. Otherwise, if no threshold is exceeded, the program considers the payment as
valid and stores the new signature and the new total amount of ETH in its database.
The upstream packet can now be sent to the HNS along with an eventual notification of
smart contract closure. With micropayment channels as type of payment, it is possible
for the HNS to respond with a downstream packet and a new payment receipt. If this
is the case, the FNS program verifies again the payment receipt by following the same
procedure as the one just described and if the payment is valid, the downstream packet
is sent to the UDP Packet Forwarder by following the same procedure as usual.

5.7.2. Blockchain

To open a micropayment channel, the Payment service of the Server has to deploy a
smart contract called SimplePaymentChannel on the Ethereum blockchain. This smart
contract can be found on GitHub21. The smart contract and the procedure for creating
micropayment channels have been taken from the official Solidity documentation [43].
The isValidSignature function of the SimplePaymentChannel smart contract has been
modified to make it public such that it is now callable from the FNS in order to be able to
verify a signature received by the HNS. This change is not required since the verification
can be done totally offline but, it is more convenient to do it in this way. In addition,
since it is a view function (i.e., it does not modify the state of the contract), calling it
does not consume any gas. The most important methods of the smart contract will be
explained in more details. When deploying the SimplePaymentChannel smart contract,
the Payment service has to pass as argument the Ethereum address which will receive the
payments, the amount of ETH stored in the contract and the duration of the payment
channel. All this parameter are stored in the smart contract.
The isValidSignature function permits to verify the validity of a signature by passing
as argument a signature to verify the amount value which has been used at the computa-
tion of the signature. The function starts by constructing the payment message by first

21https://github.com/inefix/Decentralized-LoRa/blob/master/Server/Payment/
SimplePaymentChannel.sol
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concatenating and encoding the address of the contract and the amount. The resulting
payment message is then hashed with the keccak256 algorithm. It is then possible to use
the ecrecover build-in function in Solidity that permits to return the address (public
key) that was used to sign the payment message (the payment message and the signature
have to be passed as argument). The isValidSignature function returns if the address
obtained is the one used to deploy the smart contract. This permit to verify that a sig-
nature has been generated by the correct Ethereum address and that this signature has
effectively been computed over the correct address of the smart contract and the correct
amount value.
The close function has to be called by the Ethereum address which will receive the pay-
ment. This function takes has parameter an amount value and a signature. It first checks
the validity of the signature by using the isValidSignature function. If the signature is
valid, funds equals to the amount value passed are sent to Ethereum address which called
the close function and the remaining funds of the smart contract are sent back to the
address that deployed it.
The extend function can be called to extend the expiration of the micropayment channel.
This function can only be called by the address which has deployed the smart contract.
Finally, the claimTimeout function can only be called by the address which has deployed
the smart contract if the payment channel has expired. This function sends all the ETH
present in the smart contract back to address that deployed it.
The procedure to generate the micropayment signatures is described in the next subsec-
tion.

5.7.3. Payment service

The program to be run as the Payment service can be found on the Server/Payment
directory of the GitHub repository22. The program has been tested on Node 14 and is an
HTTP server (using the Koa JavaScript library) that runs on port 3000 of the localhost
address of the Server. The service also runs on the same Docker Compose instance as the
HNS and the AS. It exposes three URLs that can be called by the HNS to perform all
the necessary payment related functionalities of the Server. This three URLs redirect to
three functions: payment, signPayment and deploy. To configure the Payment service
program, the user needs to provide his Ethereum address and the private key associated
to it. The private key is used on the Payment service to sign transactions on the OMG
Network, to deploy SimplePaymentChannel smart contracts for opening micropayment
channels and to sign micropayment transactions.
The payment function can be called to send a payment on the OMG Network thanks
to the OMG Network JavaScript library, omg-js23. The function needs the address of
the receiver of the payment, the amount to transfer and the metadata to include in the
transaction. The function constructs the transaction, signs it using the private key and
submits it on the OMG Network. The transaction hash of the submitted transaction is
then returned by the function.
The signPayment function can be called to generate a signature used as proof of pay-
ment in micropayment channels. The function takes as arguments the address of the
smart contract and the amount of the payment. The procedure starts by constructing

22https://github.com/inefix/Decentralized-LoRa/tree/master/Server/Payment
23https://github.com/omgnetwork/omg-js
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the payment message by first concatenating and encoding the address of the contract and
the amount, and then by hashing the result with the keccak256 algorithm. The payment
message is then signed using the private key. The function then returns the computed
signature.
The deploy function can be called to deploy a new SimplePaymentChannel smart con-
tract and thus to create a new micropayment channel. The function takes as arguments
the address of the receiver of the payment, the amount to initialize the smart contract
with and the duration of the payment channel. A transaction is created for deploying the
smart contract by using the ABI and the bytecode of the contract. The arguments pro-
vided to the function are also added in the transaction which is signed using the private
key and then deployed on the Ethereum blockchain. The function returns the address of
the newly deployed smart contract.

5.7.4. Home Network Server (HNS)

When receiving the hash of the Countersign_structure, the signature and the header of
the upstream packet along with the Ethereum address of the FNS, the HNS starts by
verifying the hash and the signature. This is done by first getting the public key of the
device in the database and then using a function to verify the digest (the hash) by using
the signature and the public key. If the verification succeed, the HNS asks for a payment
to the Payment service.
For a payment on the OMG Network, the HNS has to provide the metatada which include
the counter present in the header of the message and the deviceAdd. Furthermore, the
HNS has to provide to the Payment service the Ethereum address of the Gateway and
the amount to send (this amount can be the price of a single message or the one of two
messages). The HNS sends an HTTP request to the Payment service which returns the
transaction hash as payment receipt.
On the other hand, for a payment using micropayment channels, the HNS program first
verifies if a micropayment channel has already been opened with this Gateway and oth-
erwise opens a new one. Since opening a new micropayment channel implies to deploy a
smart contract on the blockchain which cost a lot of gas, it is important to have a mech-
anism to try to use as much as possible existing, already opened micropayment channel.
This is where the functionality to wait 10 seconds when a packet is received from a new
Gateway takes a lot of sense. If it is still needed to open a new micropayment channel,
the HNS program has to call the Payment service with an HTTP request by providing
the address of the Gateway, the amount of ETH to lock in the smart contract and the
duration of the payment channel. This last two parameters can be configured by the
user when starting the HNS program. The Payment service returns the smart contract
address that has to be stored along with the data sent as parameters in the database of
the program. Once a payment channel exists between two addresses, the HNS program
has to provide to the Payment service only the address of the smart contract and the
total amount owned by the Gateway (the amount already owned plus the price of the new
packet). The Payment service returns the signature of the payment as payment receipt to
this HTTP request. It is important for the HNS program to always update the database
with the last amount owed.
Afterwards, the payment receipt can be sent to the FNS. In the case of using the OMG
Network, it is also possible to send a downstream packet programmed by the AS due to
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the 2 minutes waiting time restriction described previously. In the case of micropayment
channels, the payment receipt is sent along with the smart contract address and the price
of one message. If the verification of the payment succeeded on the FNS side, the HNS
program receives the desired upstream packet along with a possible notification of micro-
payment channel closure. If the notification is present, the HNS verifies that the smart
contract balance is effectively equal to zero in order to delete this payment channel from
its database.
The HNS can then finally process the received upstream packet as usual. In the case of
using micropayment channels, it is then possible to respond with a downstream packet
either programmed by the AS or generated by the HNS. The eventual downstream packet
has to be paid using the same procedure such that it can be sent with the payment receipt
to the FNS.

5.8. Outlook

The underneath sequence diagram gathers the original sequence diagram of the project
and the one from the Micropayment extension into a single one. This final sequence
diagram permits to have a great understanding and overview of the entire implementation
that has been realized for the thesis.

Fig. 5.6.: Final sequence diagram of the entire thesis



5.9. Pycose library 56

5.9. Pycose library

The pycose library [49] is a Python implementation of COSE which is available in RFC
8152 [4]. The library permits to create various COSE messages including: Sign, Sign1,
Mac, Mac0, Encrypt and Encrypt0. Unfortunately, the library does not support the ad-
dition of a COSE_CounterSignature structure to the provided COSE messages. Since
this project wants to use countersignatures in order to have COSE messages as short as
possible, a countersignature implementation in Python is needed. Thus, a library that
permits to add COSE_CounterSignature structure has been developed. This library is a
fork of the pycose library [46].
The fork mainly consist in the addition of a file called countersignmessage.py24 in the
cose/messages directory. The implementation of the countersignature feature respects
the way COSE messages are created by the original pycose library in order to keep a
certain consistency across the new library. However, this new functionality differs from
the other features of the library because it modifies a COSE message instead of creating
a new one. The countersignmessage.py file and its most important methods are ex-
plained in more details.
The countersignmessage.py starts by defining the CBOR tag associated with the
COSE_CounterSignature structure. This tag has the value 11 as the examples in the
Internet-Draft COSE_CounterSign [5] suggest. The file defines a CountersignMessage
class which contains a few variables mainly used to store the different fields of the COSE
message to which the COSE_CounterSignature structure is added. This variables will
be used to reconstruct the full COSE message at the end.
The __init__ function permits to initialize the fields of the COSE_CounterSignature
structure which are: the protected header, the unprotected header and the signature. In
addition, this function stores the different fields of the COSE message in the previous
mentioned variables.
The _sig_structure function is used to construct the Countersign_structure and to
return it. Since the process to generate the signature is explained in details in section
3.3 and the code mostly follows the explanations provided, the process is not discussed
again.
The encode function is used to reconstruct the full COSE message (the original COSE
message with the COSE_CounterSignature structure appended in the unprotected part
of the header of the COSE message).
Finally, the verify_signature function, as the name suggest, is used to verify the sig-
nature present in a COSE message. This is done by extracting the signature from the
COSE_CounterSignature structure and then verifying it with the public key provided.
The fork of the library also implies the addition of the CountersignMessage object in
the __init__.py25 file in the cose/messages directory and in the modification of the
identifier value from 7 to 11 in the CounterSignature class of the headers.py26 file in
the cose directory.

24https://github.com/inefix/pycose/blob/master/cose/messages/countersignmessage.py
25https://github.com/inefix/pycose/blob/master/cose/messages/__init__.py
26https://github.com/inefix/pycose/blob/master/cose/headers.py

https://github.com/inefix/pycose/blob/master/cose/messages/countersignmessage.py
https://github.com/inefix/pycose/blob/master/cose/messages/__init__.py
https://github.com/inefix/pycose/blob/master/cose/headers.py
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6.1. Introduction

This chapter presents an evaluation of the implementation. The chapter starts by a
comparison of the size of the different components of a LoRa-MAC packet. Then, a section
comparing various antennas highlights the gaps that exists between different models.
Afterwards, a comparison of both micropayment solutions describes the advantages and
the disadvantages along with the use-cases of each solution. This section also contains
a comparison of the transaction fees of both solutions. The chapter then presents some
issues that were encountered. Finally, a section containing some precisions about the
limitations of the implementation is presented.

6.2. LoRa-MAC packet size

The LoRa-MAC protocol aims at providing the highest level of security. Unfortunately,
this comes at the expense of message size. In fact, sending a "helloWorld" payload which
has a length of 10 characters / bytes results in a final LoRa-MAC packet having a length
of 188 characters. Of course the packet is longer because it has an header but the header
is only 35 characters long thanks to the use of a tag for the MType.
To provide the highest level of security, the payload has to be encrypted in the ciphertext
which is 26 characters long. Furthermore the ciphertext has to be signed. This results
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in a signature of 64 characters. Someone could argue that the signature is not needed
since the ciphertext is encrypted with AES-GCM which is an authenticated mode for
AES. Unfortunately, AES-GCM does not provide non-repudation since the ciphertext is
encrypted with the symmetric / private key. The following tree sums up the size of the
different components of a LoRa-MAC packet.

Fig. 6.1.: Size of the different components of a LoRa-MAC packet

The subsequent table shows the size in characters / bytes and the overhead of the LoRa-
MAC and LoRaWAN packets obtained from payloads of different sizes. The size of the
LoRaWAN packets are much smaller since LoRaWAN does not provide non-repudation
through the use of digital signatures. In fact, the integrity and the authenticity of
messages in LoRaWAN are ensured by a Cipher-based MAC (CMAC) algorithm (AES-
CMAC [13]) and the MIC associated is the first 4 bits of the calculated CMAC. In
addition, this can also be explained with the fact that LoRaWAN is more compact and
less verbose than LoRa-MAC.

Payload LoRa-MAC LoRaWAN
Size (bytes) Size (bytes) Overhead (%) Size (bytes) Overhead (%)

4 181 4525 17 425
8 186 2325 21 262.5
16 194 1215.5 29 181.25
32 209 653.125 45 140.625

Tab. 6.1.: Size and overhead of LoRa-MAC and LoRaWAN packets

The larger packet size of LoRaWAN can result in higher power consumption for the
devices and decreased reliability of communication. In fact, higher power consumption
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is due to longer time spent on cryptographic operations as well as on transmission and
decreased reliability results from higher chance of message collision and / or corruption [1].
Finally, it is interesting to note that the overhead percentage decreases as the size of the
payload increases.

6.3. Antennas

The quality and the size of the antennas used by the end devices and the gateways make
an important difference in the quality of the communication in the entire LoRa-MAC
protocol. In fact, having a poor quality antenna can result in packet being corrupted or
not being received at all. This is why, multiple antennas have been tested on the Gateway
side in order to find a suitable one. This section contains the results obtained when
comparing three different antennas on the gateway side. The subsequent picture shows
the dimensions of the three antennas tested. The smallest one is the base antenna provided
when buying the RAK831 LPWAN Gateway Concentrator Module1, the medium2 and
the biggest3 one can be bought on Digi-Key.

Fig. 6.2.: Dimensions of three different antennas

1https://store.rakwireless.com/products/rak831-gateway-module
2https://www.digikey.ch/product-detail/en/linx-technologies-inc/ANT-868-OC-LG-RPS/
343-ANT-868-OC-LG-RPS-ND/12158019

3https://www.digikey.ch/product-detail/en/nearson-inc/S1551AH-868S/730-1067-ND/7320173

https://store.rakwireless.com/products/rak831-gateway-module
https://www.digikey.ch/product-detail/en/linx-technologies-inc/ANT-868-OC-LG-RPS/343-ANT-868-OC-LG-RPS-ND/12158019
https://www.digikey.ch/product-detail/en/linx-technologies-inc/ANT-868-OC-LG-RPS/343-ANT-868-OC-LG-RPS-ND/12158019
https://www.digikey.ch/product-detail/en/nearson-inc/S1551AH-868S/730-1067-ND/7320173
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The subsequent table contains the Received Signal Strength Indication (RSSI) values
measured in dBm at the reception of LoRa packets sent by a device at various distances
in meter from the Gateway. All the packets are sent using the same parameters as the ones
in the LoRa-MAC protocol, which means using a frequency of 867.5 MHz, a spreading
factor of 12, a coding rate of 4/7 and a bandwidth of 125 KHz.

1 m 3 m 5 m 10 m

Antennas
Small -46 -46 -47 -62 -66 -66 -67 -59 -61 -51 -52 -52
Medium -28 -28 -29 -46 -44 -49 -49 -52 -52 -43 -43 -43
Big -29 -28 -28 -37 -36 -36 -40 -41 -39 -49 -49 -49

Tab. 6.2.: RSSI values measured in dBm

"The RSSI is the received signal power in milliwatts and is measured in dBm. The
value can be used as a measurement of how well a receiver can "hear" a signal from a
sender" [50]. The RSSI is expressed as a negative value and the closer it gets to 0, the
better the signal is. Typical LoRa RSSI values are: -120 dBm as minimum which means
that the signal is weak and -30 dBm which signifies that the signal is strong [50]. It is in
addition important to mention that the scale is logarithmic which implies that differences
between values are much more important that what they seem.
Accordingly, it is possible to observe that the differences between the antennas are rela-
tively important especially when receiving packets from short distances. However, when
the distances start to become larger, the differences are reduced. This is especially im-
portant since the LoRa technology has been designed for long range transmission.
The antenna that seems to have the best results is the biggest one4. Hence, this is the
antenna that has been used for the Gateway during the final tests and demonstrations of
the project.

6.4. Micropayment Evaluation

This section will start by comparing, from the point of view of the usability in the
project, both micropayment solutions implemented and will then list some use-cases along
with the best solution for each one accordingly to their advantages and disadvantages.
Furthermore, a comparison of the transaction fees to send a micropayment is provided.
Micropayment channel

• Advantage:
– Since the payments are done totally off-chain (without using any blockchain),

they are instantaneous and can be sent through WebSockets.
• Disadvantages:

– The Server is required to open a micropayment channel and lock ETH in
advance for each gateway wanting to send a packet to it.

– The Server has to deploy a new smart contract for each micropayment channel.

4https://www.digikey.ch/product-detail/en/nearson-inc/S1551AH-868S/730-1067-ND/7320173

https://www.digikey.ch/product-detail/en/nearson-inc/S1551AH-868S/730-1067-ND/7320173
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– For both the Gateway and the Server, managing multiple micropayment chan-
nels can be painful especially if a lot of them are opened. In fact, the various
smart contracts have to be monitored based on some thresholds and closed at
the right time so that no money is lost on both sides.

OMG Network

• Advantage:
– ETH can be locked only once by the Server for all the transactions with the

gateways.
• Disadvantages:

– OMG Network is considered as semi-decentralized because, even if everyone
can run its own watcher to verify the security of the network, the child chain
is run only by a single node managed by the OMG Fundation.

– Due to the 2 minutes waiting period between each transaction sent from one
account / wallet, compromises have to be made in the implementation. They
include having to forward dowstream packets without the payment being veri-
fied on the Gateway side and not having the ability to send automatic responses
on the Server side.

– Due to the way the plasma framework is implemented, there is a long waiting
period to withdraw funds from the Ethereum layer 2 solution back to the main
layer. This waiting period can go up to one week.

6.4.1. Use-cases

If a user receives messages from his devices at predetermined times and there are no
urgent data to process and to answer to, the OMG Network solution could make sense.
This could be the case for example for a farmer who wants to get the temperature of one
of his field every 15 minutes.
On the other hand, if a user receives a lot of messages from different devices and these
messages have to be processed instantly, the micropayment channel solution is more
adequate. This could be the case for example when monitoring fire alarms in buildings.

6.4.2. Transaction fees

The transaction fees to send any amount of ETH on the Ethereum Mainnet at the time
of writing (16 August 2021) are shown in Tab. 6.3. The price of 1 ETH is around 3200
USD. All three transaction fees assume a gas limit of 21’000 gas. The gas price in GWEI
(1 GWEI = 0.000000001 ETH) for the slow solution is set to 40, for the average solution
to 42 and for the fast solution to 49. The gas limit is the maximum amount of units of
gas a user is willing to spend for a transaction and the gas price specifies the amount of
ETH a user is willing to pay for each unit of gas.
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Gas limit Gas price (GWEI) Transaction fees (ETH) Transaction fees (USD)
Slow 21’000 40 0.00084 2.76
Average 21’000 42 0.00088 2.89
Fast 21’000 49 0.00103 3.38

Tab. 6.3.: Transaction fees to send any amount of ETH on the Ethereum Mainnet

The transaction fees to send a micropayment using a micropayment channel have to be
calculated by taking into consideration all the different steps involved with a transaction
in a micropayment channel. A micropayment channel starts by the deployment of a smart
contract on the Server side. This costs exactly 524’876 gas. Sending micropayments is
then totally free so no gas are used. Closing the payment channel costs 46’397 gas to the
Gateway. The addition of both gas fees equals 571’273 gas. If the same gas price is used
as before, the total transaction fees and the fees for each participant of the transaction
would be the followings:

Gas limit Gas price (GWEI) Tx fees (ETH) Tx fees (USD)

Slow
Server 524’876 40 0.02099 67.18
Gateway 46’397 40 0.00186 5.94
Total 571’273 40 0.02285 73.12

Average
Server 524’876 42 0.022045 70.54
Gateway 46’397 42 0.001949 6.24
Total 571’273 42 0.023993 76.78

Fast
Server 524’876 49 0.025719 82.30
Gateway 46’397 49 0.002273 7.28
Total 571’273 49 0.027992 89.58

Tab. 6.4.: Transaction (Tx) fees for micropayment channels

The transaction fees to send a micropayment using the OMG Network have to be cal-
culated by taking into consideration all the different steps of a transaction in the OMG
Network. This implies first depositing ETH on the OMG Network for the Server. Send-
ing micropayments is not free and the fees should be considered. Finally, the fees for the
Server and the Gateway to recover the funds on the Ethereum Mainnet should be taken
into consideration. Depositing and withdrawing any amount on the OMG Network using
the OMG Network Web Wallet5 requires a gas limit of 168’533 gas and costs 33 GWEI
for the slow solution, 36 for the average solution and 39 for the fast one. The transaction
fees to send a payment on the OMG Network is 0.07157 OMG tokens6 which equals to
0.00013 ETH (0,42 USD)7. The price of 1 OMG token is 5.88 USD at the time of writing
(16 August 2021). The total transaction fees and the fees for each participant of the
transaction would be the followings:

5https://webwallet.mainnet.v1.omg.network/
6https://blockexplorer.mainnet.v1.omg.network/fees
7https://coinmarketcap.com/fr/converter/

https://webwallet.mainnet.v1.omg.network/
https://blockexplorer.mainnet.v1.omg.network/fees
https://coinmarketcap.com/fr/converter/
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OMG Network (ETH) Micropayment (ETH) Tx fees (ETH) Tx fees (USD)

Slow
Server 2 * 0.00556 0.00013 0.01125 36
Gateway 0.00556 0.00013 0.00556 17.80
Total 3 * 0.00556 0.00013 0.01681 53.80

Average
Server 2 * 0.00607 0.00013 0.01226 39.24
Gateway 0.00607 0.00013 0.00607 19.41
Total 3 * 0.0061 0.00013 0.01833 58.66

Fast
Server 2 * 0.00657 0.00013 0.01327 42.48
Gateway 0.00657 0.00013 0.00657 21.03
Total 3 * 0.00657 0.00013 0.01985 63.51

Tab. 6.5.: Transaction (Tx) fees for the OMG Network

Of course, when using both micropayment solutions, it does not make any sense to send
only one micropayment transaction since the interactions with the Ethereum main chain
cost a lot of ETH. Accordingly, starting a micropayment channel is convenient when at
least 27 transactions8 are exchanged between parties. For using the OMG Network, it
is after at least 25 transactions9 that the solution becomes interesting. By taking the
same example as previously of a farmer that receives LoRa packets every 15 minutes,
both solutions are profitable in comparison to sending transactions with the Ethereum
Mainnet after only a few hours. Unfortunately, even with the optimization of using layer
2 solutions, the fees of using Ethereum remain on the higher range in confront to the cost
of the other options presented in section 2.3. However, it is important to mention that
these fees are so high and prohibitive because the price of ETH is at an all-time-high
and the consensus used by Ethereum is PoW. With the shift to a PoS consensus and the
various optimizations that will come along, it is possible to imagine a drastic diminution
in these fees.
Moreover, it is profitable to maximize the use of the micropayment solutions, especially
micropayment channels, once they have been initialized. Therefore, the Server needs to
try as much as possible to not open new payment channels with every gateway it receives
packets from. This is why, the 10 seconds waiting time when receiving a LoRa packet not
from the usual Gateway on the Server side, makes a lot of sense and has therefore been
implemented.

6.5. Issues

During the implementation of the master thesis, different issues were encountered. On the
software side, there were mainly due to the fact that blockchain development is relatively
new and much more advanced in the JavaScript libraries than in the Python ones. Thus,
there were some cases where a functionality has to be totally implemented in Python
while in JavaScript, the functionality was already implemented and it is only necessary
to use a provided library. This is why, at the time of selecting the programming language
to implement the Payment service, JavaScript was selected without any doubt. The same
could be said about COSE which does not get much attention in Python and this is why
COSE_CounterSignature structures had to be implemented on top of the existing library.
On the hardware side, there have been numerous issues with the devices to be run as the

8 76.78/2.89 ≈ 27
9 3 ∗ 0.0061 + 0.00013 ∗X = 0.00088 ∗X, with X is equal to the number of transactions to break-even
X ≈ 25
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End Device. In fact, at the beginning, downstream LoRa packets were not received at all
by the LoPy4. It is only after a countless amount of experiments and time that a solution
was finally found. On the less brighter side, a will was to use a Adafruit LoRa Radio
Bonnet10 connected through SPI on top of the Raspeberry Pi Zero W. Unfortunately,
despite all the work and the researches done, it has been impossible to send raw LoRa
packets with modulation parameters that are compatible with the LoRaWAN gateway.
This is why, another solution had to be found which finally consisted in connecting the
Raspberry Pi Zero W to the LoPy4 through serial.

6.6. Limitations

The master thesis presents a proof-of-concept architecture and implementation and thus
should not be expected as a fully production solution. To try the softwares developed, it
is imperative to respect the instructions provided and to use the hardware specified.

10https://www.adafruit.com/product/4074

https://www.adafruit.com/product/4074


7
Future Work

Since the subject is so vast, there exist several interesting opportunities to extend or
improve the implementation. This include extensions on the LoRa-MAC protocol itself
as well as on the End Device side or even on the Micropayment extension side:

• Using ephemeral keys and thus switching to Elliptic-curve Diffie-Hellman Ephemeral
(ECDHE) instead of ECDH could result in an even higher level of security. It is
possible to imagine a solution where the End Device and the Server would gen-
erate some new keys using their existing keys after a certain number of messages
exchanged to ensure that an attacker could not have access to the entire communi-
cation even if he gets access to some of the keys. This would require more extensive
key exchanges between both entities.

• Optionally, using symmetric MAC (Message Authentication Code) instead of digital
signatures for producing shorter messages without non-repudiation.

• Developing a MicroPython library for the LoPy4 in order to be independent from the
Raspberry Pi. This library should contain all the cryptographic functions needed
as well as CBOR and COSE.

• Adding a logic (for example: Node-RED1) to generate automatic downstream pack-
ets on the Server side. This would allow to analyze the packets received by the
devices and create the payloads of the response downstream packets. It is also pos-
sible to imagine the development of an API to make things even more convenient
to use.

• Changing the plasma solution selected from OMG Network to Polygon2 previously
called Matic Network which seems more promising to even further reduce the cost
of using the Ethereum blockchain.

• Trying other layer 2 solutions to enhance the Ethereum layer 1 could result in some
even more detailed comparisons between the various layer 2 solutions.

• Using a single smart contract for all the micropayment channels instead of deploying
a new one each time, could result in a significant reduction of the transaction fees.

1https://nodered.org/
2https://polygon.technology/
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8
Conclusion

The project has shown how the use of asymmetric cryptography could be used to provide
confidentiality and especially non-repudation in addition to integrity and authentication
already provided with symmetric cryptography. The decentralization of the LoRa infras-
tructure using the blockchain has been provided by creating a new LoRa-MAC protocol
that depends on a smart contract deployed on the Rinkeby Test Network of Ethereum.
To interact with the newly created protocol and smart contract, the needed softwares
which permit an use of the new infrastructure with the standardized LoRa softwares on
the existing hardware, have been developed. In addition, as it was one of the goal of the
project, the proposed LoRa-MAC protocol implements the basic features of LoRaWAN
as described in the thesis. A special focus as been followed during the entire project
in order to have LoRa packets as short as possible without compromising the highest
level of security. This is why, special encoding techniques in the name of CBOR and
COSE have been used. Furthermore, it was important to show that by providing non-
repudation and decentralization, a new world of decentralized uses-cases is now open. To
illustrate that, the project focused on bringing remuneration in crowd-sourced networks
which would allow to anyone to deploy their own gateway and to get compensated for
forwarding packets to the Internet. Transferring micropayments has been made possible
thanks to the use of layer 2 solutions on Ethereum that helped bringing down the fees
of transactions. Accordingly, two layer 2 solutions (plasma and micropayment channels)
have been explored which have given the ability to compare the fees of the Ethereum
main chain with the two solutions.
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A
LoraResolver Smart Contract

1 // SPDX-License-Identifier: GPL-3.0
2

3 pragma solidity >0.7.0 <0.9.0;
4

5 contract LoraResolver {
6

7 struct Device {
8 uint32 ipv4Addr;
9 uint128 ipv6Addr;

10 string domain;
11 uint16 ipv4Port;
12 uint16 ipv6Port;
13 uint16 domainPort;
14 address owner;
15 uint256 x_pub;
16 uint256 y_pub;
17 }
18

19 struct Server {
20 uint256 x_pub;
21 uint256 y_pub;
22 address owner;
23 }
24

25 mapping(uint64 => Device) public devices;
26

27 mapping(uint32 => Server) public ipv4Servers;
28 mapping(uint128 => Server) public ipv6Servers;
29 mapping(string => Server) public domainServers;
30

31 function registerIpv4Device(uint64 loraAddr, uint32 server, uint16 port, uint256
x_pub, uint256 y_pub) public {

32 require(devices[loraAddr].owner == address(0) || devices[loraAddr].owner == msg
.sender, "Device already owned");

33 require(loraAddr != 0, "loraAddr cannot be 0");
34 require(server != 0, "Server address cannot be 0");
35 require(port != 0, "Server port cannot be 0");
36 require(x_pub != 0, "x_pub cannot be 0");
37 require(y_pub != 0, "y_pub cannot be 0");
38 devices[loraAddr].ipv4Addr = server;
39 devices[loraAddr].ipv4Port = port;
40 devices[loraAddr].owner = msg.sender;
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41 devices[loraAddr].x_pub = x_pub;
42 devices[loraAddr].y_pub = y_pub;
43 }
44

45 function registerIpv6Device(uint64 loraAddr, uint128 server, uint16 port, uint256
x_pub, uint256 y_pub) public {

46 require(devices[loraAddr].owner == address(0) || devices[loraAddr].owner == msg
.sender, "Device already owned");

47 require(loraAddr != 0, "loraAddr cannot be 0");
48 require(server != 0, "Server address cannot be 0");
49 require(port != 0, "Server port cannot be 0");
50 require(x_pub != 0, "x_pub cannot be 0");
51 require(y_pub != 0, "y_pub cannot be 0");
52 devices[loraAddr].ipv6Addr = server;
53 devices[loraAddr].ipv6Port = port;
54 devices[loraAddr].owner = msg.sender;
55 devices[loraAddr].x_pub = x_pub;
56 devices[loraAddr].y_pub = y_pub;
57 }
58

59 function registerDomainDevice(uint64 loraAddr, string memory domain, uint16 port,
uint256 x_pub, uint256 y_pub) public {

60 require(devices[loraAddr].owner == address(0) || devices[loraAddr].owner == msg
.sender, "Device already owned");

61 require(loraAddr != 0, "loraAddr cannot be 0");
62 require(keccak256(bytes(domain)) != keccak256(bytes("")), "Server domain cannot

be empty");
63 require(port != 0, "Server port cannot be 0");
64 require(x_pub != 0, "x_pub cannot be 0");
65 require(y_pub != 0, "y_pub cannot be 0");
66 devices[loraAddr].domain = domain;
67 devices[loraAddr].domainPort = port;
68 devices[loraAddr].owner = msg.sender;
69 devices[loraAddr].x_pub = x_pub;
70 devices[loraAddr].y_pub = y_pub;
71 }
72

73

74 function registerIpv4Server(uint32 ipv4Addr, uint256 x_pub, uint256 y_pub) public
{

75 require(ipv4Servers[ipv4Addr].owner == address(0) || ipv4Servers[ipv4Addr].
owner == msg.sender, "Server already owned");

76 require(ipv4Addr != 0, "ipv4Addr cannot be 0");
77 require(x_pub != 0, "x_pub cannot be 0");
78 require(y_pub != 0, "y_pub cannot be 0");
79 ipv4Servers[ipv4Addr].owner = msg.sender;
80 ipv4Servers[ipv4Addr].x_pub = x_pub;
81 ipv4Servers[ipv4Addr].y_pub = y_pub;
82 }
83

84 function registerIpv6Server(uint128 ipv6Addr, uint256 x_pub, uint256 y_pub) public
{

85 require(ipv6Servers[ipv6Addr].owner == address(0) || ipv6Servers[ipv6Addr].
owner == msg.sender, "Server already owned");

86 require(ipv6Addr != 0, "ipv6Addr cannot be 0");
87 require(x_pub != 0, "x_pub cannot be 0");
88 require(y_pub != 0, "y_pub cannot be 0");
89 ipv6Servers[ipv6Addr].owner = msg.sender;
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90 ipv6Servers[ipv6Addr].x_pub = x_pub;
91 ipv6Servers[ipv6Addr].y_pub = y_pub;
92 }
93

94 function registerDomainServer(string memory domain, uint256 x_pub, uint256 y_pub)
public {

95 require(domainServers[domain].owner == address(0) || domainServers[domain].
owner == msg.sender, "Server already owned");

96 require(keccak256(bytes(domain)) != keccak256(bytes("")), "Server domain cannot
be empty");

97 require(x_pub != 0, "x_pub cannot be 0");
98 require(y_pub != 0, "y_pub cannot be 0");
99 domainServers[domain].owner = msg.sender;

100 domainServers[domain].x_pub = x_pub;
101 domainServers[domain].y_pub = y_pub;
102 }
103

104

105 }

List. A.1: LoraResolver smart contract
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Application Server web site

Fig. B.1.: Devices page

70



71

Fig. B.2.: Modal to add a new device

Fig. B.3.: Modal to modify the name of an existing device
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Fig. B.4.: Modal to send a message to a device

Fig. B.5.: Messages page

Fig. B.6.: Modal to respond to a message



73

Fig. B.7.: Down page

Fig. B.8.: Modal to modify the payload of a down message
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Common Acronyms

ABI Application Binary Interface
AES Advanced Encryption Standard
API Application Programming Interface
AppKey Application Key
AS Application Server
CBOR Concise Binary Object Representation
CHF Cryptographic Hash Function
CMAC Cipher-based MAC
CoAP Constrained Application Protocol
COSE CBOR Object Signing and Encryption
CRC Cyclic Redundancy Check
CSS Cascading Style Sheet
DNS Domain Name System
DSA Digital Signature Algorithm
ECC Elliptic-curve cryptography
ECDH Elliptic-curve Diffie-Hellman
ECDHE Elliptic-curve Diffie-Hellman Ephemeral
ECDSA Elliptic Curve Digital Signature Algorithm
ENS Ethereum Name Service
ETH Ether
EVM Ethereum Virtual Machine
FIFO First-In, First-Out
FIPS Federal Information Processing Standard
FNS Forwarding Network Server
HKDF HMAC-based Extract-and-Expand Key Derivation Function
HNS Home Network Server
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IoT Internet of Things
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IV Initialization Vector
JOSE Javascript Object Signing and Encryption
JSON JavaScript Object Notation
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KDF Key Derivation Function
KID Key Identifier
LoRa Long Range
LoRaWAN Long Range Wide Area Network
LPWAN Low Power Wide Area Network
MAC Medium Access Control
MIC Message Integrity Code
MoreVP More Viable Plasma
NIST National Institute of Standards and Technology
NSA National Security Agency
NwkKey Network Key
OMG OmiseGO
OSI Open Systems Interconnection
PHY Physical
PoC Proof of Coverage
PoG Proof of Guarantee
PoS Proof of Stake
PoW Proof of Work
REST Representational state transfer
RF Radio Frequency
RPC Remote Procedure Call
RSSI Received Signal Strength Indication
SHA Secure Hash Algorithms
SPI Serial Peripheral Interface
TCP Transmission Control Protocol
TTN The Things Network
UDP User Datagram Protocol
URL Uniform Resource Locator
USB Universal Serial Bus
USD United States Dollar
VM Virtual Machine
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License of the Documentation

Copyright (c) 2021 Andrea Rar.

Permission is granted to copy, distribute and / or modify this document under the terms
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The GNU Free Documentation Licence can be read from the GNU.org web site [51].
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