Pattern recognition

  • Unterricht

    Details

    Fakultät Math.-Nat. und Med. Fakultät
    Bereich Informatik
    Code UE-SIN.08608
    Sprachen Englisch
    Art der Unterrichtseinheit Vorlesung
    Kursus Master
    Semester FS-2023

    Zeitplan und Räume

    Vorlesungszeiten Montag 14:15 - 17:00, Wöchentlich (Frühlingssemester)
    Strukturpläne 3h par semaine durant 14 semaines
    Kontaktstunden 42

    Unterricht

    Verantwortliche
    • Ingold Rolf
    Dozenten-innen
    • Fischer Andreas
    Beschreibung In this course, we study the fundaments of pattern recognition. We adopt an engineering point of view on the development of intelligent machines which are able to identify patterns in data. The core methods and algorithms are elaborated that enable pattern recognition for a wide range of data sources including sensory data (image, video, audio, location, etc.) as well as born-digital data (text, network traffic, chemical formulas, etc.). The course is organized in two parts. In the first part, we explore statistical pattern recognition based on feature vector representation. Standard methods for unsupervised clustering and supervised classification in vector spaces will be discussed. In the second part, we investigate structural pattern recognition based on string and graph representation. For clustering and classification of structural data, dissimilarity measures will be introduced alongside with explicit and implicit vector space embedding approaches. The course is accompanied by practical exercises that involve the implementation of algorithms discussed in class and their application to exemplary pattern recognition tasks.
    Lernziele On successful completion of this class, you will be able to:

    - Design pattern recognition systems for a large variety of data sources, namely to cluster and classify objects represented as feature vectors, feature vector sequences, strings, and graphs.

    - Describe the mathematical techniques, assumptions, and relevant parameters of the underlying recognition algorithms, including k-means clustering, Bayes classification, support vector machines, neural networks, hidden Markov models, graph edit distance, and graph kernel functions.

    - Apply the pattern recognition systems to exemplary recognition tasks ranging from image recognition over movement analysis to the classification of molecular compounds.

    Bemerkungen

    MSc-CS BENEFRI - (Code Ue: 33082 / Track: T3; Code Ue: 63082 / Track: T6) The exact date and time of this course as well as the complete course list can be found at http://mcs.unibnf.ch/.

    Course and exam registration on ACADEMIA (not myunifr.ch). Please follow the instructions on https://mcs.unibnf.ch/organization/

    Soft Skills Nein
    ausserhalb des Bereichs Nein
    BeNeFri Ja
    Mobilität Ja
    UniPop Nein
  • Einzeltermine und Räume
    Datum Zeit Art der Unterrichtseinheit Ort
    20.02.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    27.02.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    06.03.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    13.03.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    20.03.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    27.03.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    03.04.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    17.04.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    24.04.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    01.05.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    08.05.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    15.05.2023 14:15 - 17:00 Kurs PER 21, Raum C230
    22.05.2023 14:15 - 17:00 Kurs PER 21, Raum C230
  • Leistungskontrolle

    Schriftliche Prüfung

    Bewertungsmodus Nach Note
  • Zuordnung
    Zählt für die folgenden Studienpläne:
    Digitale Neurowissenschaft (Spezialisierter Master) 120 [MA]
    Version: 2023_1/V_01
    sp-MSc in Digitaler Neurowissenschaft, UE zur Wahl (Praktika, Projekte, Seminare) > sp-MSc in Digitaler Neurowissenschaft, UE zur Wahl (ab HS2023)

    Ergänzende Lehrveranstaltungen in Naturwissenschaften
    Version: ens_compl_sciences
    Paquet indépendant des branches > UE für Vertiefungsstudium in Informatik (Niveau Master)

    Informatik [3e cycle]
    Version: 2015_1/V_01
    Weiterbildung > UE für Vertiefungsstudium in Informatik (Niveau Master)

    Informatik [POST-DOC]
    Version: 2015_1/V_01
    Weiterbildung > UE für Vertiefungsstudium in Informatik (Niveau Master)

    MSc in Bioinformatik und computationale Biologie [MA] 120
    Version: 2024_1/V_01
    MSc in Bioinformatik und computationale Biologie, Vorlesungen > MSc-BI, Module “Elective Courses” (ab HS2023)

    MSc in Informatik (BeNeFri)
    Version: 2023_1/V_01
    MSc in Informatik (BeNeFri), Vorlesungen, Seminare und Masterarbeit > T6: Data Science

    Ma - Business Communication : Wirtschaftsinformatik - 90 ECTS
    Version: 2024-SA_V03
    Wirtschaftsinformatik > Kurse > Module Informatik > Visual Computing
    Wirtschaftsinformatik > Kurse > Module Informatik > Data Science
    Wirtschaftsinformatik > Kurse > Module Wirtschaftsinformatik > DADS: Data Analytics & Decision Support

    Ma - Wirtschaftsinformatik - 90 ECTS
    Version: 2020-SA_V01
    Kurse - min. 45 ECTS > Module Wirtschaftsinformatik/Informatik > Data Science
    Kurse - min. 45 ECTS > Module Wirtschaftsinformatik/Informatik > DADS: Data Analytics & Decision Support
    Kurse - min. 45 ECTS > Module Wirtschaftsinformatik/Informatik > Visual Computing
    Kurse - min. 45 ECTS > Module Wirtschaftsinformatik - min. 22 ECTS > DADS: Data Analytics & Decision Support

    NfMa - Data Analytics - 30 ECTS
    Version: 2020-SA_V01
    À choix 9 crédits ECTS > Data Science
    À choix 9 crédits ECTS > DADS: Data Analytics & Decision Support

    NfMa - Wirtschaftsinformatik - 30 ECTS
    Version: 2020-SA_V01
    Kurse > Module Informatik > Data Science
    Kurse > Module Informatik > Visual Computing
    Kurse > Module Wirtschaftsinformatik > DADS: Data Analytics & Decision Support

    Zusatz zum Doktorat [PRE-DOC]
    Version: 2020_1/v_01
    Zusatz zum Doktorat (Math.-Nat. und Med. Fakultät) > UE für Vertiefungsstudium in Informatik (Niveau Master)