Pattern recognition
-
Unterricht
Details
Fakultät Math.-Nat. und Med. Fakultät Bereich Informatik Code UE-SIN.08608 Sprachen Englisch Art der Unterrichtseinheit Vorlesung
Kursus Master Semester FS-2023 Zeitplan und Räume
Vorlesungszeiten Montag 14:15 - 17:00, Wöchentlich (Frühlingssemester)
Strukturpläne 3h par semaine durant 14 semaines Kontaktstunden 42 Unterricht
Verantwortliche - Ingold Rolf
Dozenten-innen - Fischer Andreas
Beschreibung In this course, we study the fundaments of pattern recognition. We adopt an engineering point of view on the development of intelligent machines which are able to identify patterns in data. The core methods and algorithms are elaborated that enable pattern recognition for a wide range of data sources including sensory data (image, video, audio, location, etc.) as well as born-digital data (text, network traffic, chemical formulas, etc.). The course is organized in two parts. In the first part, we explore statistical pattern recognition based on feature vector representation. Standard methods for unsupervised clustering and supervised classification in vector spaces will be discussed. In the second part, we investigate structural pattern recognition based on string and graph representation. For clustering and classification of structural data, dissimilarity measures will be introduced alongside with explicit and implicit vector space embedding approaches. The course is accompanied by practical exercises that involve the implementation of algorithms discussed in class and their application to exemplary pattern recognition tasks. Lernziele On successful completion of this class, you will be able to:
- Design pattern recognition systems for a large variety of data sources, namely to cluster and classify objects represented as feature vectors, feature vector sequences, strings, and graphs.
- Describe the mathematical techniques, assumptions, and relevant parameters of the underlying recognition algorithms, including k-means clustering, Bayes classification, support vector machines, neural networks, hidden Markov models, graph edit distance, and graph kernel functions.
- Apply the pattern recognition systems to exemplary recognition tasks ranging from image recognition over movement analysis to the classification of molecular compounds.Bemerkungen MSc-CS BENEFRI - (Code Ue: 33082 / Track: T3; Code Ue: 63082 / Track: T6) The exact date and time of this course as well as the complete course list can be found at http://mcs.unibnf.ch/.
Course and exam registration on ACADEMIA (not myunifr.ch). Please follow the instructions on https://mcs.unibnf.ch/organization/
Soft Skills Nein ausserhalb des Bereichs Nein BeNeFri Ja Mobilität Ja UniPop Nein -
Einzeltermine und Räume
Datum Zeit Art der Unterrichtseinheit Ort 20.02.2023 14:15 - 17:00 Kurs PER 21, Raum C230 27.02.2023 14:15 - 17:00 Kurs PER 21, Raum C230 06.03.2023 14:15 - 17:00 Kurs PER 21, Raum C230 13.03.2023 14:15 - 17:00 Kurs PER 21, Raum C230 20.03.2023 14:15 - 17:00 Kurs PER 21, Raum C230 27.03.2023 14:15 - 17:00 Kurs PER 21, Raum C230 03.04.2023 14:15 - 17:00 Kurs PER 21, Raum C230 17.04.2023 14:15 - 17:00 Kurs PER 21, Raum C230 24.04.2023 14:15 - 17:00 Kurs PER 21, Raum C230 01.05.2023 14:15 - 17:00 Kurs PER 21, Raum C230 08.05.2023 14:15 - 17:00 Kurs PER 21, Raum C230 15.05.2023 14:15 - 17:00 Kurs PER 21, Raum C230 22.05.2023 14:15 - 17:00 Kurs PER 21, Raum C230 -
Leistungskontrolle
Schriftliche Prüfung
Bewertungsmodus Nach Note -
Zuordnung
Zählt für die folgenden Studienpläne: Digitale Neurowissenschaft (Spezialisierter Master) 120 [MA]
Version: 2023_1/V_01
sp-MSc in Digitaler Neurowissenschaft, UE zur Wahl (Praktika, Projekte, Seminare) > sp-MSc in Digitaler Neurowissenschaft, UE zur Wahl (ab HS2023)
Ergänzende Lehrveranstaltungen in Naturwissenschaften
Version: ens_compl_sciences
Paquet indépendant des branches > UE für Vertiefungsstudium in Informatik (Niveau Master)
Informatik [3e cycle]
Version: 2015_1/V_01
Weiterbildung > UE für Vertiefungsstudium in Informatik (Niveau Master)
Informatik [POST-DOC]
Version: 2015_1/V_01
Weiterbildung > UE für Vertiefungsstudium in Informatik (Niveau Master)
MSc in Bioinformatik und computationale Biologie [MA] 120
Version: 2024_1/V_01
MSc in Bioinformatik und computationale Biologie, Vorlesungen > MSc-BI, Module “Elective Courses” (ab HS2023)
MSc in Informatik (BeNeFri)
Version: 2023_1/V_01
MSc in Informatik (BeNeFri), Vorlesungen, Seminare und Masterarbeit > T6: Data Science
Ma - Business Communication : Wirtschaftsinformatik - 90 ECTS
Version: 2020-SA_V02
Kurse - 60 ECTS > Optionsgruppe > Wirtschaftsinformatik > Kurse > Module Informatik > Visual ComputingKurse - 60 ECTS > Optionsgruppe > Wirtschaftsinformatik > Kurse > Module Informatik > Data ScienceKurse - 60 ECTS > Optionsgruppe > Wirtschaftsinformatik > Kurse > Module Wirtschaftsinformatik > DADS: Data Analytics & Decision Support
Ma - Wirtschaftsinformatik - 90 ECTS
Version: 2020-SA_V01
Kurse - min. 45 ECTS > Module Wirtschaftsinformatik/Informatik > Data ScienceKurse - min. 45 ECTS > Module Wirtschaftsinformatik/Informatik > DADS: Data Analytics & Decision SupportKurse - min. 45 ECTS > Module Wirtschaftsinformatik/Informatik > Visual ComputingKurse - min. 45 ECTS > Module Wirtschaftsinformatik - min. 22 ECTS > DADS: Data Analytics & Decision Support
NfMa - Data Analytics - 30 ECTS
Version: 2020-SA_V01
À choix 9 crédits ECTS > Data ScienceÀ choix 9 crédits ECTS > DADS: Data Analytics & Decision Support
NfMa - Wirtschaftsinformatik - 30 ECTS
Version: 2020-SA_V01
Kurse > Module Informatik > Data ScienceKurse > Module Informatik > Visual ComputingKurse > Module Wirtschaftsinformatik > DADS: Data Analytics & Decision Support
Zusatz zum Doktorat [PRE-DOC]
Version: 2020_1/v_01
Zusatz zum Doktorat (Math.-Nat. und Med. Fakultät) > UE für Vertiefungsstudium in Informatik (Niveau Master)