Mathematical modeling and Linear optimization
-
Unterricht
Details
Fakultät Math.-Nat. und Med. Fakultät Bereich Informatik Code UE-SIN.07620 Sprachen Englisch Art der Unterrichtseinheit Vorlesung
Kursus Master Semester HS-2024 Zeitplan und Räume
Vorlesungszeiten Dienstag 14:15 - 17:00, Wöchentlich (Herbstsemester)
Strukturpläne 3h par semaine durant 14 semaines Kontaktstunden 42 Unterricht
Verantwortliche - Ries Bernard
Dozenten-innen - Pacheco Paneque Meritxell
- Tellache Nour Elhouda
Beschreibung This course considers modeling and optimization aspects of mixed-integer linear programming (or integer programming for short). This important subdomain of mathematical programming and extension of linear programming considers the problem of optimizing a linear function of many variables, some or all of them restricted to be integers, subject to linear constraints.
Integer programming is a thriving area of optimization. It has countless applications in production planning and scheduling, logistics, layout planning and revenue management, to name just a few. Thanks to effective and reliable software, it is widely applied in industry to improve decision-making.
In this course, we cover the theory and practice of integer programming. In the first part, we address mathematical modeling aspects. We discuss how integer variables can be used to model various practically relevant, complex decision problems. We then introduce some standard optimization problems and develop, analyze and compare different integer programming formulations for them. We also introduce powerful modeling and solving tools and test them on the optimization problems given in the course. In the second part, we address optimization aspects, in which we discuss the basic methodology applied to solve integer programs. In particular, we consider implicit enumeration techniques (branch and bound), polyhedral theory, cutting planes and primal heuristics. We also look at some advanced techniques, such as Danzig-Wolfe decomposition and column generation.
Lernziele With this course, the students gain the ability to formulate and solve practically relevant decision problems using integer programming, and they understand the basic methodology for solving integer programs and its implications with respect to modeling decisions.
Bemerkungen MSc-CS BENEFRI - (Code Ue: 53073/ Track: T5) The exact date and time of this course as well as the complete course list can be found at http://mcs.unibnf.ch/.
Course and exam registration on ACADEMIA (not myunifr.ch). Please follow the instructions on https://mcs.unibnf.ch/organization/
Soft Skills Nein ausserhalb des Bereichs Nein BeNeFri Ja Mobilität Ja UniPop Nein -
Einzeltermine und Räume
Datum Zeit Art der Unterrichtseinheit Ort 17.09.2024 14:15 - 17:00 Kurs PER 21, Raum F130 24.09.2024 14:15 - 17:00 Kurs PER 21, Raum F130 01.10.2024 14:15 - 17:00 Kurs PER 21, Raum F130 08.10.2024 14:15 - 17:00 Kurs PER 21, Raum F130 15.10.2024 14:15 - 17:00 Kurs PER 21, Raum F130 22.10.2024 14:15 - 17:00 Kurs PER 21, Raum F130 29.10.2024 14:15 - 17:00 Kurs PER 21, Raum F130 05.11.2024 14:15 - 17:00 Kurs PER 21, Raum F130 12.11.2024 14:15 - 17:00 Kurs PER 21, Raum F130 19.11.2024 14:15 - 17:00 Kurs PER 21, Raum F130 26.11.2024 14:15 - 17:00 Kurs PER 21, Raum F130 03.12.2024 14:15 - 17:00 Kurs PER 21, Raum F130 10.12.2024 14:15 - 17:00 Kurs PER 21, Raum F130 17.12.2024 14:15 - 17:00 Kurs PER 21, Raum F130 -
Leistungskontrolle
Prüfung
Bewertungsmodus Nach Note -
Zuordnung
Zählt für die folgenden Studienpläne: Ergänzende Lehrveranstaltungen in Naturwissenschaften
Version: ens_compl_sciences
Paquet indépendant des branches > UE für Vertiefungsstudium in Informatik (Niveau Master)
Informatik [3e cycle]
Version: 2015_1/V_01
Weiterbildung > UE für Vertiefungsstudium in Informatik (Niveau Master)
Informatik [POST-DOC]
Version: 2015_1/V_01
Weiterbildung > UE für Vertiefungsstudium in Informatik (Niveau Master)
Ma - Business Communication : Wirtschaftsinformatik - 90 ECTS
Version: 2024-SA_V03
Wirtschaftsinformatik > Kurse > Module Wirtschaftsinformatik > DADS: Data Analytics & Decision Support
Ma - Wirtschaftsinformatik - 90 ECTS
Version: 2020-SA_V01
Kurse - min. 45 ECTS > Module Wirtschaftsinformatik - min. 22 ECTS > DADS: Data Analytics & Decision SupportKurse - min. 45 ECTS > Module Wirtschaftsinformatik/Informatik > DADS: Data Analytics & Decision Support
NfMa - Data Analytics - 30 ECTS
Version: 2020-SA_V01
À choix 9 crédits ECTS > DADS: Data Analytics & Decision Support
NfMa - Wirtschaftsinformatik - 30 ECTS
Version: 2020-SA_V01
Kurse > Module Wirtschaftsinformatik > DADS: Data Analytics & Decision Support
Zusatz zum Doktorat [PRE-DOC]
Version: 2020_1/v_01
Zusatz zum Doktorat (Math.-Nat. und Med. Fakultät) > UE für Vertiefungsstudium in Informatik (Niveau Master)