Data Analytics in Python

  • Teaching

    Details

    Faculty Interfaculty
    Departments New Technologies and Education Centre
    Domain Interdisciplinary: Digital Skills
    Code UE-I09.00006
    Languages English
    Type of lesson Lecture
    Level Master, Doctorat, Bachelor
    Semester AS-2022

    Schedules and rooms

    Summary schedule Tuesday 14:15 - 16:00, Hebdomadaire (Autumn semester)

    Teaching

    Responsibles
    • Cuccu Giuseppe
    Teachers
    • Cuccu Giuseppe
    Description

    From Big Data to Machine Learning, applications based on Data Analytics have become ubiquitous over the past decades, as we truly are in the Age of Information. This course aims at providing the basis to understand and navigate autonomously the topic, from both a theoretical and practical perspective. The Python programming language will also receive significant attention, as to provide the students with tools and skillset immediately useful in the modern industrial and academic landscape, including application-oriented Machine Learning.

    The course material is in English and available at all time. The students are encouraged to follow the lectures at their own pace, and start at any time. Support is provided at specific times during the academic year.

    This online course offers an overarching study of Data Analytics from multiple perspectives, which will be addressed as they become needed through the course progression. The main topics are:

    • Python programming: language fundamentals, Jupyter notebooks, object-oriented programming, advanced functionalities, core libraries, debugging.
    • Handling data: data sources, defects and mitigation, access and formats, visualization.
    • Analysis: experiment design, data selection, normalization, feature selection, fundamental statistics.
    • Machine Learning: classification, regression, clustering, imputation, dimensionality reduction, with a few selected algorithms on each topic.
    • Additional Python libraries: Numpy, IPython, Pandas, Seaborn/Matplotlib, Scikit-Learn, Keras/Tensorflow.
    Training objectives

    This online course provides the students with the competences and skills to perform advanced Data Analysis using the Python programming language.

    Condition of access

    The course Python programming online is recommended but not mandatory.

    Comments

    Des attestations de compétences sont délivrées sur demande des étudiant∙es pour les cours suivis.

    Les étudiant∙es reçoivent 3 ECTS, s’ils, elles valident tous les modules proposés.

    Pour s’inscrire à un examen il faut se connecter au portail my.unifr.ch.

    Pour la reconnaissance des crédits ECTS dans leur cursus de formation, les étudiant∙es doivent, au préalable, faire une demande auprès de leur faculté, HES.
    Available seats 24
    Softskills Yes
    Off field No
    BeNeFri Yes
    Mobility Yes
    UniPop No
    Auditor Yes
  • Dates and rooms
    Date Hour Type of lesson Place
    20.09.2022 14:15 - 16:00 Cours PER 21, Room F207
    27.09.2022 14:15 - 16:00 Cours PER 21, Room F207
    04.10.2022 14:15 - 16:00 Cours PER 21, Room F207
    11.10.2022 14:15 - 16:00 Cours PER 21, Room F207
    18.10.2022 14:15 - 16:00 Cours PER 21, Room F230
    25.10.2022 14:15 - 16:00 Cours PER 21, Room F230
    08.11.2022 14:15 - 16:00 Cours PER 21, Room F230
    22.11.2022 14:15 - 16:00 Cours PER 21, Room F230
    29.11.2022 14:15 - 16:00 Cours PER 21, Room F230
    06.12.2022 14:15 - 16:00 Cours PER 21, Room F230
    13.12.2022 14:15 - 16:00 Cours PER 21, Room F230
    20.12.2022 14:15 - 16:00 Cours PER 21, Room F230
  • Assessments methods

    Examen - AS-2022, Session d'hiver 2023

    Date 31.01.2023 14:00 - 16:00
    Assessments methods By rating
  • Assignment
    Valid for the following curricula:
    Branche interfacultaire [Cours]
    Version: competences_numeriques

    Digital Neuroscience (Specialised Master) 120 [MA]
    Version: 2023_1/V_01
    sp-MSc in Digital Neuroscience, compulsory courses (practical courses, projects, seminars)

    Education / Psychology 120
    Version: SA20_BA_de_v01
    BP1.7-D Bereichsübergreifende Kompetenzen

    Education / Psychology 120
    Version: SA20_BA_bil_v01
    BP1.7-B Bereichsübergreifende Kompetenzen / Compétences transversales

    Educational Sciences 120
    Version: SA20_BA_bil_v01
    Variante B > BE1.7b-B Bereichsübergreifende Kompetenzen

    Educational Sciences 120
    Version: SA20_BA_de_v01
    BE1.8-D Bereichsübergreifende Kompetenzen

    French 120
    Version: SA16_BA_fr_V04
    Module 8 - CTC

    Italian 120
    Version: SA15_BA_ital_V02
    Soft Skills

    Italian 120
    Version: SA15_BA_ita_V01
    Soft Skills

    Psychology 180
    Version: SA19_BA_fr_de_bil_v02
    Module 11 > M11 Soft skills

    Religious Studies 120
    Version: SA17_BA_bi_v02
    SR-Compétences transversales ou complémentaires CTC (SR-BA17-120)

    Spanish 120
    Version: SA16_BA_esp_V02
    M7 - Competencias transversales (CTC)