Big Data Methods

  • Teaching

    Details

    Faculty Faculty of Management, Economics and Social Sciences
    Domain Economics
    Code UE-EEP.00142
    Languages English
    Type of lesson Lecture
    Level Master
    Semester SS-2023

    Schedules and rooms

    Summary schedule Wednesday 17:15 - 20:00, Hebdomadaire (Spring semester)
    Hours per week 3

    Teaching

    Teachers
    • Huber Martin
    Assistants
    • Stoller Andreas
    Description

    This course discusses quantitative methods for analyzing "big data", i.e. data sets that have either many observations or many variables or both. Firstly, the course covers flexible or "nonparametric" econometric methods for data with many observations, where "flexible" implies that the researcher aims at imposing as few behavioral assumptions as possible. These methods are often more accurate than standard approaches such as OLS, which assumes a linear relation between the explanatory and dependent variables that might not hold in reality.
    Secondly, the course discusses so-called "machine learning" approaches to deal with data that include many variables, in order to optimally exploit the vast information provided in variables. Separating relevant from irrelevant information is key in a world with ever increasing data availability.
    The following topics will be covered in the course:
    * Flexible (non/semiparametric) vs. parametric statistical (or econometric) models
    * Nonparametric regression methods: Kernel regression, series approximation, smoothing splines
    * Methods for choosing smoothing and bandwidth parameters
    * Testing: nonparametric specification and distribution tests
    * Machine learning for prediction and causal analysis based on shrinkage and variable selection: Lasso and ridge regression
    * Machine learning for prediction and causal analysis based on decision trees, bagged trees, and random forests
    * Introduction to further machine learners: boosting, support vector machines, neural nets, and ensemble methods
    The lecture is accompanied by 4 PC sessions based on the software package "R", in which the methods are applied to empirical data.

    Training objectives

    This course provides students with statistical methods for analyzing "big data" (data sets with many observations and/or variables) that are often more accurate than "standard" tools (such as OLS) hinging on rather restrictive behavioral assumptions. Students should understand the intuition of and differences between the various methods (but are not required to formally reproduce tedious proofs) and how to practically implement them in the statistical software package “R” in order to investigate real world data.

    Condition of access

    Knowledge of introductory econometrics/statistics

    Softskills Yes
    Softskills seats 10
    Off field No
    BeNeFri Yes
    Mobility Yes
    UniPop No

    Documents

    Bibliography

    J. Racine (2008): “Nonparametric Econometrics: A Primer”, Foundations and Trends in Econometrics, Vol. 3, No 1, pp. 1–88. https://www.nowpublishers.com/article/Details/ECO-009

    G. James, D. Witten, T. Hastie, and R. Tibshirani (2013): An Introduction to Statistical Learning with Applications in R, Springer, New York. http://www-bcf.usc.edu/~gareth/ISL/

    Further references are provided on the moodle site of the course.

  • Dates and rooms
    Date Hour Type of lesson Place
    22.02.2023 17:15 - 20:00 Cours PER 21, Room B130
    01.03.2023 17:15 - 20:00 Cours PER 21, Room B130
    08.03.2023 17:15 - 20:00 Cours PER 21, Room B130
    15.03.2023 17:15 - 20:00 Cours PER 21, Room B130
    22.03.2023 17:15 - 20:00 Cours PER 21, Room B130
    29.03.2023 17:15 - 20:00 Cours PER 21, Room B130
    05.04.2023 17:15 - 20:00 Cours PER 21, Room B130
    19.04.2023 17:15 - 20:00 Cours PER 21, Room B130
    26.04.2023 17:15 - 20:00 Cours PER 21, Room B130
    03.05.2023 17:15 - 20:00 Cours PER 21, Room B130
    10.05.2023 17:15 - 20:00 Cours PER 21, Room B130
    17.05.2023 17:15 - 20:00 Cours PER 21, Room B130
    24.05.2023 17:15 - 20:00 Cours PER 21, Room B130
    31.05.2023 17:15 - 20:00 Cours PER 21, Room B130
  • Assessments methods

    Written exam - SS-2023, Session d'été 2023

    Date 09.06.2023 17:00 - 18:30
    Assessments methods By rating
    Descriptions of Exams

    Examination time: 90 Min. and participation in PC labs

    Written exam - SS-2023, Session de rattrapage 2023

    Date 01.09.2023 14:00 - 15:30
    Assessments methods By rating
    Descriptions of Exams

    Examination time: 90 Min. and participation in PC labs

    Written exam - AS-2023, Session d'hiver 2024

    Date 09.01.2024 11:00 - 12:30
    Assessments methods By rating
    Descriptions of Exams

    Examination time: 90 Min. and participation in PC labs

  • Assignment
    Valid for the following curricula:
    BeNeFri - Sciences économiques et sociales
    Version: 2018-SP_V01 - SES BeNeFri
    Course > Master course offering for BeNeFri Students

    Complementary learnings in SES or mobility students
    Version: ens_compl_ses
    Mster course offering for Mobility Students

    Doc - Business Informatics
    Version: 20210713
    Elective courses > Wahlkurse UNIFR

    Doc - Economics
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Economie quantitative
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Management
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Management in Nonprofit-Organisation
    Version: 2002-SA_V01 -60 ECTS Théoriques
    Elective courses > Wahlkurse UNIFR

    Doc - Sciences sociales
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Sciences économiques et sociales
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    European Studies 30 [MA]
    Version: SA14_MA_PS_bil_v01
    Enjeux économiques, politiques et sociaux en Europe > Modul "Economie" (Option A)

    Ma - Accounting and Finance - 120 ECTS
    Version: 2024-SP_V02 - DD Caen
    UniFr courses > Elective courses - Max 18 ECTS > SES Master level courses
    UniFr courses > Modules "Data Analytics" and "Audit et Fiscalité": min. 2 courses > DAT: Data Analytics

    Ma - Accounting and Finance - 90 ECTS
    Version: 2021-SA_V02 - Dès SA-2024
    Course - 72 ECTS > Minimum 0 / maximum 1 optional master course offered at the University of Fribourg, if 72 ECTS not yet reached in the above modules > SES Master level courses
    Course - 72 ECTS > Modules "Data Analytics" and "Audit et Fiscalité": min. 3 courses > DAT: Data Analytics > Core courses

    Ma - Business Communication - Management - 90 ECTS
    Version: 2022-SA_V03
    Courses - 60 ECTS > Management > 30 ECTS parmi les modules : > DIG: Managing Digitalisation

    Ma - Business Communication : Business Informatics - 90 ECTS
    Version: 2024-SA_V03
    Information Management > Cours > Modules management > DAT: Data Analytics
    Information Management > Cours > Modules management > DIG: Managing Digitalisation

    Ma - Business Communication : Economics - 90 ECTS
    Version: 2021-SA_V03
    Courses > Option Group > Economics > Elective courses - 18 ECTS > Kurse der Module Master Volkswirtschaftslehre, ohne die Module 4 und 9

    Ma - Business Informatics - 90 ECTS
    Version: 2020-SA_V01
    Classes - min. 45 ECTS > Modules management - max. 15 ECTS > DIG: Managing Digitalisation
    Classes - min. 45 ECTS > Modules management - max. 15 ECTS > DAT: Data Analytics

    Ma - Communication and Society - 90 ECTS
    Version: 2021-SA_V03
    Forschungsbereiche > Inter- & Transdisciplinary Perspectives

    Ma - Data Analytics & Economics - 90 ECTS
    Version: 2020-SA_V02
    Courses min 63 ECTS > Mandatory Modules (45 to 63 ECTS) > Module I: Data Analytics (Data) > Elective courses

    Ma - Economics - 90 ECTS
    Version: 2021-SA_V04
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Quantitative Economics > Elective courses in Quantitative Economics > Courses from the SES faculty - max. 15 ECTS > SES Master level courses
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Quantitative Economics > Elective courses in Quantitative Economics
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Quantitative Economics
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Sustainable Development and Social Responsibility > Elective courses in Sustainable Development and Social Responsibility > Elective courses in Economics
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Sustainable Development and Social Responsibility > Elective courses in Sustainable Development and Social Responsibility > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Public Economics and Policy > Elective courses in Public Economics and Policy > Elective courses in Economics
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Public Economics and Policy > Elective courses in Public Economics and Policy > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Business Economics > Elective courses in Business Economics > Elective courses in Economics
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Business Economics > Elective courses in Business Economics > Wahlkurse der SES-Fakultät - max. 15 ECTS > SES Master level courses
    Course selection for the Master WITHOUT options > Elective courses > Elective courses in Economics
    Course selection for the Master WITHOUT options > Elective courses > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses

    Ma - International and European Business - 90 ECTS
    Version: 2021-SA_V01 - dès SA-2024
    Courses > Modules > Elective courses of the management modules > Elective courses of the management modules > Elective courses for the Master in management
    Courses > Modules > One complete module taken from the following list > DIG Module validation element group > DIG: Managing Digitalisation > Elective courses
    Courses > Modules > One complete module taken from the following list > DAT Module validation element group > DAT: Data Analytics > Core courses
    Courses > Additional courses > SES Master level courses

    Ma - Management - 90 ECTS
    Version: 2021-SA_V03 - Dès SA-2024
    Courses: min. 72 ECTS > Modules - min 54 ECTS > Minimum of 3 modules with a minimum of 18 ECTS and 2 core courses > DIG Module validation element group > DIG: Managing Digitalisation > Elective courses
    Courses: min. 72 ECTS > Modules - min 54 ECTS > Minimum of 3 modules with a minimum of 18 ECTS and 2 core courses > DAT Module validation element group > DAT: Data Analytics > Core courses
    Courses: min. 72 ECTS > Modules - min 54 ECTS > Elective courses taken outside a validating module > Elective courses in the management modules > Elective courses for the Master in management
    Courses: min. 72 ECTS > Elective courses > SES Master level courses

    Ma - Marketing - 90 ECTS
    Version: 2021-SA_V03 - Dès SA-2024
    Courses - 72 ECTS > Complementary module > DIG Module validation element group > DIG: Managing Digitalisation > Elective courses
    Courses - 72 ECTS > Complementary module > DAT Module validation element group > DAT: Data Analytics > Core courses
    Courses - 72 ECTS > Elective Master courses from the whole university > SES Master level courses

    Ma - Public Economics and Public Finance - 90 ECTS
    Version: 2021-SA_V01 - DD PEPF
    Cours > Up to 40 ECTS credits must fulfill the conditions required for the specialisation according to the approuved document "Individual choice of lectures". > Elective courses in Economics

    MiMa - Business Informatics - 30 ECTS
    Version: 2020-SA_V01
    Cours > Modules management > DIG: Managing Digitalisation
    Cours > Modules management > DAT: Data Analytics

    MiMa - Data Analytics - 30 ECTS
    Version: 2020-SA_V01
    À choix 18 crédits ECTS

    MiMa - Economics - 30 ECTS
    Version: 2021-SA_V01
    Elective courses > Elective courses in Economics

    MiMa - Gestion d'entreprise - 30 ECTS
    Version: 2021-SA_V01
    Elective courses - 30 ECTS > DIG: Managing Digitalisation
    Elective courses - 30 ECTS > DAT: Data Analytics