Econometric Methods and Applications

  • Teaching

    Details

    Faculty Faculty of Management, Economics and Social Sciences
    Domain Economics
    Code UE-EEP.00496
    Languages English
    Type of lesson Lecture
    Level Master
    Semester AS-2024

    Schedules and rooms

    Summary schedule Monday 08:15 - 12:00, Hebdomadaire, PER 21, Room E230 (Autumn semester)

    Teaching

    Teachers
    • Huber Martin
    Assistants
    • Oberhänsli Sarina Joy
    • Stoller Andreas
    Description

    This course discusses several of the practically most relevant econometric/statistical methods for empirical research (e.g. in economics and social sciences) along with their underlying assumptions and properties. It also presents applications of these methods in real-world data using the statistical software “R (studio)”. The course consists of a lecture and 4 PC lab sessions. The topics covered in the lecture include:

    1. The difference between causation (e.g. education has a causal effect on wage) and correlation (subjects with higher education have higher wages, but this may be driven by other factors than education as for instance ability); the intuition of experiments for assessing causation.
    2. Linear regression (OLS - ordinary least squares) to assess the association of one or several variables (e.g. education, age,...) with an outcome of interest (e.g. wage).
    3. Quantile regression to conduct empirical analyses at particular outcome ranks (e.g. for the median earner in the wage distribution).
    4. Nonlinear regression (probit regression for binary outcomes like working vs. not working, tobit regression for censored outcomes).
    5. Instrumental variable regression and regression discontinuity designs under endogeneity.
    6. Panel data regression and “Differences-in-Differences” estimation when subjects are observed at several points in time.
    7. Synthetic Control Method.
    8. General concepts of estimation: M-estimators, maximum likelihood, and generalized methods of moments.
    9. Bootstrapping (resampling from the original data, e.g. for variance estimation).
    10. Time series regression, e.g. for modeling stock prices or GDP growth over time.

     

    As practical illustration, the PC lab sessions consider empirical examples, in which the different econometric methods are applied to various data sets using the statistical software R (studio).

    Training objectives

    The objectives are that students (1) get familiar with the econometric methods most commonly used in applied work, (2) understand the differences in the properties and assumptions of the various methods along with their advantages and disadvantages, and (3) can practically implement econometric methods to analyze real-world data.

    Softskills Yes
    Off field No
    BeNeFri Yes
    Mobility Yes
    UniPop No
    Auditor Yes

    Documents

    Bibliography

    Wooldridge, J. M. (2010): Econometric Analysis of Cross Section and Panel Data, 2nd edition, The MIT Press.

    Huber, M. (2023). Causal Analysis: Impact Evaluation and Causal Machine Learning with Applications in R. The MIT Press.

  • Dates and rooms
    Date Hour Type of lesson Place
    16.09.2024 08:15 - 12:00 Cours PER 21, Room E230
    23.09.2024 08:15 - 12:00 Cours PER 21, Room E230
    30.09.2024 08:15 - 12:00 Cours PER 21, Room E230
    07.10.2024 08:15 - 12:00 Cours PER 21, Room E230
    14.10.2024 08:15 - 12:00 Cours PER 21, Room E230
    21.10.2024 08:15 - 12:00 Cours PER 21, Room E230
    28.10.2024 08:15 - 12:00 Cours PER 21, Room E230
    04.11.2024 08:15 - 12:00 Cours PER 17, Room 001
    11.11.2024 08:15 - 12:00 Cours PER 17, Room 001
    18.11.2024 08:15 - 12:00 Cours PER 17, Room 001
    25.11.2024 08:15 - 12:00 Cours PER 21, Room E230
    02.12.2024 08:15 - 12:00 Cours PER 21, Room E230
    09.12.2024 08:15 - 12:00 Cours PER 21, Room E230
    16.12.2024 08:15 - 12:00 Cours PER 21, Room E230
  • Assessments methods

    Written exam - AS-2024, Session d'hiver 2025

    Date 13.01.2025 14:00 - 15:30
    Assessments methods By rating
    Descriptions of Exams

    Examination time: 90 Min. and participation in PC labs

    Written exam - SS-2025, Session de rattrapage 2025

    Date 18.08.2025 17:00 - 18:30
    Assessments methods By rating
    Descriptions of Exams

    Examination time: 90 Min. and participation in PC labs

  • Assignment
    Valid for the following curricula:
    BeNeFri - Sciences économiques et sociales
    Version: 2018-SP_V01 - SES BeNeFri
    Course > Master course offering for BeNeFri Students

    Complementary learnings in SES or mobility students
    Version: ens_compl_ses
    Mster course offering for Mobility Students

    Doc - Business Informatics
    Version: 20210713
    Elective courses > Wahlkurse UNIFR

    Doc - Economics
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Economie quantitative
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Management
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Management in Nonprofit-Organisation
    Version: 2002-SA_V01 -60 ECTS Théoriques
    Elective courses > Wahlkurse UNIFR

    Doc - Sciences sociales
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    Doc - Sciences économiques et sociales
    Version: 2002-SA_V01
    Cours a choix > Wahlkurse UNIFR

    Ma - Accounting and Finance - 120 ECTS
    Version: 2024-SP_V02 - DD Caen
    UniFr courses > Modules "Data Analytics" and "Audit et Fiscalité": min. 2 courses > DAT: Data Analytics
    UniFr courses > Elective courses - Max 18 ECTS > SES Master level courses

    Ma - Accounting and Finance - 90 ECTS
    Version: 2021-SA_V02 - Dès SA-2024
    Course - 72 ECTS > Modules "Data Analytics" and "Audit et Fiscalité": min. 3 courses > DAT: Data Analytics > Core courses
    Course - 72 ECTS > Minimum 0 / maximum 1 optional master course offered at the University of Fribourg, if 72 ECTS not yet reached in the above modules > SES Master level courses

    Ma - Business Communication : Business Informatics - 90 ECTS
    Version: 2024-SA_V03
    Information Management > Cours > Modules management > DAT: Data Analytics

    Ma - Business Communication : Economics - 90 ECTS
    Version: 2021-SA_V03
    Courses > Option Group > Economics > Mandatory courses

    Ma - Business Communication : Ethics and Economics 90 ECTS
    Version: 2017-SP_V02 - Ethique
    Courses - 60 ECTS > Option Group > Ethics and Economics > Module II : Économie et éthique

    Ma - Business Informatics - 90 ECTS
    Version: 2020-SA_V01
    Classes - min. 45 ECTS > Modules management - max. 15 ECTS > DAT: Data Analytics

    Ma - Communication and Society - 90 ECTS
    Version: 2021-SA_V03
    Forschungsbereiche > Inter- & Transdisciplinary Perspectives

    Ma - Data Analytics & Economics - 90 ECTS
    Version: 2020-SA_V02
    Courses min 63 ECTS > Mandatory Modules (45 to 63 ECTS) > Module I: Data Analytics (Data) > Elective courses

    Ma - Economics - 90 ECTS
    Version: 2021-SA_V04
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Business Economics > Elective courses in Business Economics > Wahlkurse der SES-Fakultät - max. 15 ECTS > SES Master level courses
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Sustainable Development and Social Responsibility > Elective courses in Sustainable Development and Social Responsibility > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Public Economics and Policy > Elective courses in Public Economics and Policy > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses
    Le choix de l'option se fait par l'inscription au premier cours dans l'une des options possibles. > Quantitative Economics > Elective courses in Quantitative Economics > Courses from the SES faculty - max. 15 ECTS > SES Master level courses
    Mandatory courses
    Course selection for the Master WITHOUT options > Elective courses > Elective courses of the SES Faculty - max. 15 ECTS > SES Master level courses

    Ma - International and European Business - 90 ECTS
    Version: 2021-SA_V01 - dès SA-2024
    Courses > Additional courses > SES Master level courses
    Courses > Modules > Elective courses of the management modules > Elective courses of the management modules > Elective courses for the Master in management
    Courses > Modules > One complete module taken from the following list > DAT Module validation element group > DAT: Data Analytics > Core courses

    Ma - Management - 90 ECTS
    Version: 2021-SA_V03 - Dès SA-2024
    Courses: min. 72 ECTS > Elective courses > SES Master level courses
    Courses: min. 72 ECTS > Modules - min 54 ECTS > Minimum of 3 modules with a minimum of 18 ECTS and 2 core courses > DAT Module validation element group > DAT: Data Analytics > Core courses
    Courses: min. 72 ECTS > Modules - min 54 ECTS > Elective courses taken outside a validating module > Elective courses in the management modules > Elective courses for the Master in management

    Ma - Marketing - 90 ECTS
    Version: 2021-SA_V03 - Dès SA-2024
    Courses - 72 ECTS > Complementary module > DAT Module validation element group > DAT: Data Analytics > Core courses
    Courses - 72 ECTS > Elective Master courses from the whole university > SES Master level courses

    Ma - Public Economics and Public Finance - 90 ECTS
    Version: 2021-SA_V01 - DD PEPF
    Cours > Mandatory courses > Econometric Methods and Applications

    MiMa - Business Informatics - 30 ECTS
    Version: 2020-SA_V01
    Cours > Modules management > DAT: Data Analytics

    MiMa - Data Analytics - 30 ECTS
    Version: 2020-SA_V01
    À choix 18 crédits ECTS

    MiMa - Economics - 30 ECTS
    Version: 2021-SA_V01
    Mandatory courses > Econometric Methods and Applications

    MiMa - Ethics and Economics - 30 ECTS
    Version: 2023-SA_V01
    Module II - Economic development and ethics

    MiMa - Gestion d'entreprise - 30 ECTS
    Version: 2021-SA_V01
    Elective courses - 30 ECTS > DAT: Data Analytics