Pattern recognition

  • Enseignement

    Détails

    Faculté Faculté des sciences et de médecine
    Domaine Informatique
    Code UE-SIN.08608
    Langues Anglais
    Type d'enseignement Cours
    Cursus Master
    Semestre(s) SP-2023

    Horaires et salles

    Horaire résumé Lundi 14:15 - 17:00, Hebdomadaire (Semestre de printemps)
    Struct. des horaires 3h par semaine durant 14 semaines
    Heures de contact 42

    Enseignement

    Responsables
    • Ingold Rolf
    Enseignants
    • Fischer Andreas
    Description In this course, we study the fundaments of pattern recognition. We adopt an engineering point of view on the development of intelligent machines which are able to identify patterns in data. The core methods and algorithms are elaborated that enable pattern recognition for a wide range of data sources including sensory data (image, video, audio, location, etc.) as well as born-digital data (text, network traffic, chemical formulas, etc.). The course is organized in two parts. In the first part, we explore statistical pattern recognition based on feature vector representation. Standard methods for unsupervised clustering and supervised classification in vector spaces will be discussed. In the second part, we investigate structural pattern recognition based on string and graph representation. For clustering and classification of structural data, dissimilarity measures will be introduced alongside with explicit and implicit vector space embedding approaches. The course is accompanied by practical exercises that involve the implementation of algorithms discussed in class and their application to exemplary pattern recognition tasks.
    Objectifs de formation On successful completion of this class, you will be able to:

    - Design pattern recognition systems for a large variety of data sources, namely to cluster and classify objects represented as feature vectors, feature vector sequences, strings, and graphs.

    - Describe the mathematical techniques, assumptions, and relevant parameters of the underlying recognition algorithms, including k-means clustering, Bayes classification, support vector machines, neural networks, hidden Markov models, graph edit distance, and graph kernel functions.

    - Apply the pattern recognition systems to exemplary recognition tasks ranging from image recognition over movement analysis to the classification of molecular compounds.

    Commentaire

    MSc-CS BENEFRI - (Code Ue: 33082 / Track: T3; Code Ue: 63082 / Track: T6) The exact date and time of this course as well as the complete course list can be found at http://mcs.unibnf.ch/.

    Course and exam registration on ACADEMIA (not myunifr.ch). Please follow the instructions on https://mcs.unibnf.ch/organization/

     

    Softskills Non
    Hors domaine Non
    BeNeFri Oui
    Mobilité Oui
    UniPop Non
  • Dates et salles
    Date Heure Type d'enseignement Lieu
    20.02.2023 14:15 - 17:00 Cours PER 21, salle C230
    27.02.2023 14:15 - 17:00 Cours PER 21, salle C230
    06.03.2023 14:15 - 17:00 Cours PER 21, salle C230
    13.03.2023 14:15 - 17:00 Cours PER 21, salle C230
    20.03.2023 14:15 - 17:00 Cours PER 21, salle C230
    27.03.2023 14:15 - 17:00 Cours PER 21, salle C230
    03.04.2023 14:15 - 17:00 Cours PER 21, salle C230
    17.04.2023 14:15 - 17:00 Cours PER 21, salle C230
    24.04.2023 14:15 - 17:00 Cours PER 21, salle C230
    01.05.2023 14:15 - 17:00 Cours PER 21, salle C230
    08.05.2023 14:15 - 17:00 Cours PER 21, salle C230
    15.05.2023 14:15 - 17:00 Cours PER 21, salle C230
    22.05.2023 14:15 - 17:00 Cours PER 21, salle C230
  • Modalités d'évaluation

    Examen écrit

    Mode d'évaluation Par note
  • Affiliation
    Valable pour les plans d'études suivants:
    BcMa - Data Analytics - 30 ECTS
    Version: 2020-SA_V01
    À choix 9 crédits ECTS > Data Science
    À choix 9 crédits ECTS > DADS: Data Analytics & Decision Support

    BcMa - Informatique de gestion - 30 ECTS
    Version: 2020-SA_V01
    Cours > Modules informatique de gestion > DADS: Data Analytics & Decision Support
    Cours > Modules informatique > Data Science
    Cours > Modules informatique > Visual Computing

    Complément au doctorat [PRE-DOC]
    Version: 2020_1/v_01
    Complément au doctorat ( Faculté des sciences et de médecine) > UE de spécialisation en Informatique (niveau master)

    Enseignement complémentaire en sciences
    Version: ens_compl_sciences
    Paquet indépendant des branches > UE de spécialisation en Informatique (niveau master)

    Informatique [3e cycle]
    Version: 2015_1/V_01
    Formation continue > UE de spécialisation en Informatique (niveau master)

    Informatique [POST-DOC]
    Version: 2015_1/V_01
    Formation continue > UE de spécialisation en Informatique (niveau master)

    MSc en bioinformatique et biologie computationnelle [MA] 120
    Version: 2024_1/V_01
    MSc en bioinformatique et biologie computationnelle, cours > MSc-BI, Module “Elective Courses” (dès SA2023)

    MSc en informatique (BeNeFri)
    Version: 2023_1/V_01
    MSc en informatique (BeNeFri), cours, séminaires et travail de Master > T6: Data Science

    Ma - Business Communication : Informatique de gestion - 90 ECTS
    Version: 2024-SA_V03
    Informatique de gestion > Cours > Modules informatique > Visual Computing
    Informatique de gestion > Cours > Modules informatique > Data Science
    Informatique de gestion > Cours > Modules informatique de gestion > DADS: Data Analytics & Decision Support

    Ma - Informatique de gestion - 90 ECTS
    Version: 2020-SA_V01
    Cours - min. 45 ECTS > Modules informatique/informatique de gestion > DADS: Data Analytics & Decision Support
    Cours - min. 45 ECTS > Modules informatique/informatique de gestion > Data Science
    Cours - min. 45 ECTS > Modules informatique/informatique de gestion > Visual Computing
    Cours - min. 45 ECTS > Modules informatique de gestion - min. 22 ECTS > DADS: Data Analytics & Decision Support

    Neurosciences digitales (Master spécialisé) 120 [MA]
    Version: 2023_1/V_01
    sp-MSc en en neurosciences digitales, UE à choix (cours pratiques, projets, séminaires) > sp-MSc en en neurosciences digitales, UE à choix (dès SA2023)