Seminar explainable AI - Human-computer interaction meets Artificial Intelligence
-
Enseignement
Détails
Faculté Faculté des sciences et de médecine Domaine Informatique Code UE-SIN.08813 Langues Anglais Type d'enseignement Séminaire
Cursus Master Semestre(s) SP-2023 Horaires et salles
Horaire résumé Vendredi 12:15 - 16:00, Cours bloc (Semestre de printemps)
Vendredi 13:15 - 15:00, Cours bloc (Semestre de printemps)
Struct. des horaires 2h par semaine durant 14 semaines Heures de contact 28 Enseignement
Responsables - Ingold Rolf
Enseignants - Abou Khaled Omar
- Ingold Rolf
- Mugellini Elena
Description With the increasing use of automation, users tend to delegate more and more tasks to the machines. Complex systems are usually developed with an Artificial Intelligence (AI) and can embed different kinds of models and algorithms including Machine Learning and Deep Learning, which make these systems difficult to understand for the user. This assumption is for instance particularly true in the field of automated driving since the level of automation is increasing or in the health domain where more and more sophisticated AI powered diagnostic tools are used every day. In order to better understand how AI works and build trust in the decisions made by AIs, new techniques in the field are emerging that are referred to as Explainable AI (XAI) [1].
These techniques are intended to make AI transparent and the contents of the "black boxes" accessible. The main purposes of this transparency are to:
- understand the functioning of algorithms and AIs in order to optimize their design and architecture, their features but also to understand and interpret the results
- increase human confidence in systems
- increase and improve cooperation between agents
As shown by [2], providing appropriate explanations to the user increases the user’s confidence in the system and thus allows for better human-IA collaboration.The goal of this seminar is to investigate the field of Explainable AI (XAI) with a particular focus on the perspective of human interaction since it has not been sufficiently studied in existing explainable approaches [1] [3]. The seminar will address the topics related to the design of human-computer interfaces for XAI. Effective knowledge transfer through an explanation depends on a combination of AI algorithms used, explanation dialogues, and interfaces that can accommodate explanations.
Questions like “what kind of explanation do we need”, “what an explanation should look like? ”, “which is the best trade-off between performance and explainability we want to achieve”, “how granular should the explanations be” and “how to evaluate explanations” will be investigated in this seminar.This seminar will help the students to improve their research and practical abilities. It will have a strong practical component as students will investigate existing applications as well as develop new concepts in the aforementioned domains.
Objectifs de formation - Identify and illustrate existing approaches in Explainable AI.
- Discuss and compare different methods for increasing system interpretability and transparency.
- Evaluate and select the best existing interactions and interfaces for intelligibility
- Identify and describe different ways of evaluating system explanability, accountability and intelligibility
- Identify and describe how to design interfaces to increase AI system predictabilityCommentaire MSc-CS BENEFRI - (Code Ue: 33526 / Tracks: T3, Code Ue: 63526 / T6) The exact date and time of this course as well as the complete course list can be found at http://mcs.unibnf.ch/.
Course and exam registration on ACADEMIA (not myunifr.ch). Please follow the instructions on https://mcs.unibnf.ch/organization/
Softskills Non Hors domaine Non BeNeFri Oui Mobilité Oui UniPop Non -
Dates et salles
Début du séminaire le 26.05.23 à 12:00h!
Date Heure Type d'enseignement Lieu 10.03.2023 13:15 - 15:00 Cours PER 21, salle G314 21.04.2023 13:15 - 15:00 Cours PER 21, salle G314 28.04.2023 13:15 - 15:00 Cours PER 21, salle G314 26.05.2023 12:15 - 16:00 Cours PER 21, salle G314 -
Modalités d'évaluation
Evaluation continue
Mode d'évaluation Par note -
Affiliation
Valable pour les plans d'études suivants: Complément au doctorat [PRE-DOC]
Version: 2020_1/v_01
Complément au doctorat ( Faculté des sciences et de médecine) > UE de spécialisation en Informatique (niveau master)
Enseignement complémentaire en sciences
Version: ens_compl_sciences
Paquet indépendant des branches > UE de spécialisation en Informatique (niveau master)
Informatique [3e cycle]
Version: 2015_1/V_01
Formation continue > UE de spécialisation en Informatique (niveau master)
Informatique [POST-DOC]
Version: 2015_1/V_01
Formation continue > UE de spécialisation en Informatique (niveau master)
MSc en informatique (BeNeFri)
Version: 2023_1/V_01
MSc en informatique (BeNeFri), cours, séminaires et travail de Master > T3 : Visual ComputingMSc en informatique (BeNeFri), cours, séminaires et travail de Master > T6: Data Science